skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct Geologic Constraints on the Timing of Late Holocene Ice Thickening in the Amundsen Sea Embayment, Antarctica
Abstract Constraining past West Antarctic Ice Sheet (WAIS) change helps validate numerical models simulating future ice sheet dynamics. Following rapid deglaciation during the mid‐Holocene, ice near Thwaites Glacier was ∼35 m thinner than present; however, the timing of ice regrowth to its present configuration remains unknown. To fill this knowledge gap, we present cosmogenic nuclide exposure ages of cobbles from the surface of a moraine situated between Thwaites and Pope glaciers. We infer that the moraine formed and stabilized in the Late Holocene (∼1.4 ka) when a small glacier thickened. We also present a novel reconstruction of WAIS volume constrained by sea‐level data, which demonstrates that moraine formation coincided with a large‐scale WAIS readvance. Our new geologic constraints will help inform models of the solid Earth response to surface mass loading, improving our understanding of ice sheet dynamics in a vulnerable part of WAIS.  more » « less
Award ID(s):
2317097
PAR ID:
10562027
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Evidence for the timing and pace of past grounding lineretreat of the Thwaites Glacier system in the Amundsen Sea embayment (ASE)of Antarctica provides constraints for models that are used to predict thefuture trajectory of the West Antarctic Ice Sheet (WAIS). Existingcosmogenic nuclide surface exposure ages suggest that Pope Glacier, a formertributary of Thwaites Glacier, experienced rapid thinning in the early tomid-Holocene. There are relatively few exposure ages from the lower ice-freesections of Mt. Murphy (<300 m a.s.l.; metres above sea level) that are uncomplicated byeither nuclide inheritance or scatter due to localised topographiccomplexities; this makes the trajectory for the latter stages ofdeglaciation uncertain. This paper presents 12 new 10Be exposure agesfrom erratic cobbles collected from the western flank of Mt. Murphy, within160 m of the modern ice surface and 1 km from the present grounding line.The ages comprise two tightly clustered populations with mean deglaciationages of 7.1 ± 0.1 and 6.4 ± 0.1 ka (1 SE). Linear regressionanalysis applied to the age–elevation array of all available exposure agesfrom Mt. Murphy indicates that the median rate of thinning of Pope Glacierwas 0.27 m yr−1 between 8.1–6.3 ka, occurring 1.5 times faster thanpreviously thought. Furthermore, this analysis better constrains theuncertainty (95 % confidence interval) in the timing of deglaciation atthe base of the Mt. Murphy vertical profile (∼ 80 m above themodern ice surface), shifting it to earlier in the Holocene (from 5.2 ± 0.7 to 6.3 ± 0.4 ka). Taken together, the results presentedhere suggest that early- to mid-Holocene thinning of Pope Glacier occurredover a shorter interval than previously assumed and permit a longer durationover which subsequent late Holocene re-thickening could have occurred. 
    more » « less
  2. Abstract. Observations of recent mass loss rates of the West Antarctic Ice Sheet (WAIS) raise concerns about its stability since a collapse would increase global sea levels by several meters. Future projections of these mass loss trends are often estimated using numerical ice sheet models, and recent studies have highlighted the need for models to be benchmarked against present-day observed mass change rates. Here, we present an improved initialization method that optimizes local agreement not only with observations of ice thickness and surface velocity but also with satellite-based estimates of mass change rates. This is achieved by a combination of tuned thermal forcing under the floating ice shelves and friction under the ice sheet. Starting from this improved present-day state, we generate an ensemble of future simulations of Antarctic mass change by varying model physical choices and parameter values while fixing the climate forcing at present-day values. The dynamical response shows slow grounding-line retreat over several centuries, followed by a phase of rapid mass loss over about 200 years with a consistent rate of ∼3 mm GMSL yr−1 (global mean sea level). We find that, for all ensemble members, the Thwaites Glacier and Pine Island Glacier collapse. Our results imply that present-day ocean thermal forcing, if held constant over multiple centuries, may be sufficient to deglaciate large parts of the WAIS, raising global mean sea level by at least a meter. 
    more » « less
  3. Large-scale geological structures have controlled the long-term development of the bed and thus the flow of the West Antarctic Ice Sheet (WAIS). However, complete ice cover has obscured the age and exact positions of faults and geological boundaries beneath Thwaites Glacier and Pine Island Glacier, two major WAIS outlets in the Amundsen Sea sector. Here, we characterize the only rock outcrop between these two glaciers, which was exposed by the retreat of slow-flowing coastal ice in the early 2010s to form the new Sif Island. The island comprises granite, zircon U-Pb dated to ~177–174 Ma and characterized by initial ɛNd,87Sr/86Sr and ɛHfisotope compositions of -2.3, 0.7061 and -1.3, respectively. These characteristics resemble Thurston Island/Antarctic Peninsula crustal block rocks, strongly suggesting that the Sif Island granite belongs to this province and placing the crustal block's boundary with the Marie Byrd Land province under Thwaites Glacier or its eastern shear margin. Low-temperature thermochronological data reveal that the granite underwent rapid cooling following emplacement, rapidly cooled again at ~100–90 Ma and then remained close to the Earth's surface until present. These data help date vertical displacement across the major tectonic structure beneath Pine Island Glacier to the Late Cretaceous. 
    more » « less
  4. Ice sheets reshape Earth’s surface. Maps of the landscape formed by past ice sheets are our best tool for reconstructing historic ice sheet behavior. But models of glacier erosion and deposition that explain mapped features are relatively untested, and without observations of landforms developing in situ, postglacial landscapes can provide only qualitative insight into past ice sheet conditions. Here we present the first swath radar data collected in Antarctica, demonstrating the ability of swath radar technology to map the subglacial environment of Thwaites Glacier (West Antarctica) at comparable resolutions to digital elevation models of deglaciated terrain. Incompatibility between measured bedform orientation and predicted subglacial water pathways indicates that ice, not water, is the primary actor in initiating bedform development at Thwaites Glacier. These data show no clear relationship between morphology and glacier speed, a weak relationship between morphology and basal shear stress, and highlight a likely role for preexisting geology in glacial bedform shape. 
    more » « less
  5. Abstract. Cosmogenic-nuclide concentrations in subglacial bedrock cores show that the West Antarctic Ice Sheet (WAIS) at a site between Thwaites and Pope glaciers was at least 35 m thinner than present in the past several thousand years and then subsequently thickened. This is important because of concern that present thinning and grounding line retreat at these and nearby glaciers in the Amundsen Sea Embayment may irreversibly lead to deglaciation of significant portions of the WAIS, with decimeter- to meter-scale sea level rise within decades to centuries. A past episode of ice sheet thinning that took place in a similar, although not identical, climate was not irreversible. We propose that the past thinning–thickening cycle was due to a glacioisostatic rebound feedback, similar to that invoked as a possible stabilizing mechanism for current grounding line retreat, in which isostatic uplift caused by Early Holocene thinning led to relative sea level fall favoring grounding line advance. 
    more » « less