skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 13, 2025

Title: Quaternary Zintl Phases Ba 2 InSnP 3 and Ba 2 InSnAs 3 with Complex Structures and n-Type Semiconducting Behavior
Award ID(s):
1904636
PAR ID:
10562123
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AMER CHEMICAL SOC
Date Published:
Journal Name:
Chemistry of Materials
Volume:
36
Issue:
15
ISSN:
0897-4756
Page Range / eLocation ID:
7570 to 7580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The thermal properties of Ba 3 Cu 2 Sn 3 Se 10 were investigated by measurement of the thermal conductivity and heat capacity. The chemical bonding in this diamagnetic material was investigated using structural data from Rietveld refinement and calculated electron localization. This quaternary chalcogenide is monoclinic ( P 2 1 / c ), has a large unit cell with 72 atoms in the primitive cell, and a high local coordination environment. The Debye temperature (162 K) and average speed of sound (1666 m s −1 ) are relatively low with a very small electronic contribution to the heat capacity. Ultralow thermal conductivity (0.46 W m −1 K −1 at room temperature) is attributed to the relatively weak chemical bonding and intrinsic anharmonicity, in addition to a large unit cell. This work is part of the continuing effort to explore quaternary chalcogenides with intrinsically low thermal conductivity and identify the features that result in a low thermal conductivity. 
    more » « less
  2. A new compound, Ba 3 Ga 2 O 5 Cl 2 , isostructural with Ba 3 Fe 2 O 5 Cl 2 , was synthesized by solid-state reaction in air. Through single-crystal and powder X-ray diffraction analysis, the crystal structure was determined to be cubic with chiral space group I 2 1 3 and unit-cell parameter a  = 9.928 (1) Å. The Ga 3+ ions in Ba 3 Ga 2 O 5 Cl 2 are coordinated by O atoms and form GaO 4 tetrahedra. Ten neighboring GaO 4 tetrahedra are further bridged through corner sharing and rotation along the body diagonal, producing the chiral structure. Magnetization measurements indicate temperature-independent diamagnetic behavior, which is qualitatively consistent with core diamagnetism from all the constituent elements. 
    more » « less
  3. Perovskite chalcogenides are gaining substantial interest as an emerging class of semiconductors for optoelectronic applications. High-quality samples are of vital importance to examine their inherent physical properties. We report the successful crystal growth of the model system, BaZrS 3 and its Ruddlesden–Popper phase Ba 3 Zr 2 S 7 by a flux method. X-ray diffraction analyses showed the space group of Pnma with lattice constants of a = 7.056(3) Å, b = 9.962(4) Å, and c = 6.996(3) Å for BaZrS 3 and P 4 2 / mnm with a = 7.071(2) Å, b = 7.071(2) Å, and c = 25.418(5) Å for Ba 3 Zr 2 S 7 . Rocking curves with full width at half maximum of 0.011° for BaZrS 3 and 0.027° for Ba 3 Zr 2 S 7 were observed. Pole figure analysis, scanning transmission electron microscopy images, and electron diffraction patterns also establish the high quality of the grown crystals. The octahedral tilting in the corner-sharing octahedral network is analyzed by extracting the torsion angles. 
    more » « less
  4. Abstract It has been suggested that Ba3In2O6might be a high-Tcsuperconductor. Experimental investigation of the properties of Ba3In2O6was long inhibited by its instability in air. Recently epitaxial Ba3In2O6with a protective capping layer was demonstrated, which finally allows its electronic characterization. The optical bandgap of Ba3In2O6is determined to be 2.99 eV in-the (001) plane and 2.83 eV along thec-axis direction by spectroscopic ellipsometry. First-principles calculations were carried out, yielding a result in good agreement with the experimental value. Various dopants were explored to induce (super-)conductivity in this otherwise insulating material. NeitherA- norB-site doping proved successful. The underlying reason is predominately the formation of oxygen interstitials as revealed by scanning transmission electron microscopy and first-principles calculations. Additional efforts to induce superconductivity were investigated, including surface alkali doping, optical pumping, and hydrogen reduction. To probe liquid-ion gating, Ba3In2O6was successfully grown epitaxially on an epitaxial SrRuO3bottom electrode. So far none of these efforts induced superconductivity in Ba3In2O6,leaving the answer to the initial question of whether Ba3In2O6is a high-Tcsuperconductor to be ‘no’ thus far. 
    more » « less