skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: A geometry projection method for topology optimization of frames with structural shapes
We present a topology optimization method based on the geometry projection technique for the design of frames made of structural shapes. An equivalent-section approach is formulated that represents the cross-section of the structural shapes as a homogeneous rectangular section. The accuracy of this approach is demonstrated by comparison to analyses performed using body-fitted meshes of the original sections for different loads and boundary conditions. A novel geometric representation is also introduced to represent the equivalent section as a cuboid. Like offset solids, this representation is endowed with an explicit expression for the computation of the signed distance to the boundary of the primitive and of its sensitivities, allowing for an efficient implementation. An overlap constraint is imposed via the formulation of auxiliary primitives associated to the structural members, which guarantees the resulting designs do not exhibit impractical intersections of primitives that would preclude their construction. The efficacy and efficiency of the method is demonstrated via 2D and 3D design examples. The examples demonstrate that the proposed method renders optimal designs and exhibits good convergence. They also illustrate the ability to design structures with far lower optimal volume fractions than those typically employed in continuum topology optimization techniques.  more » « less
Award ID(s):
1751211
PAR ID:
10562173
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Structural and Multidisciplinary Optimization
Volume:
68
Issue:
1
ISSN:
1615-147X
Subject(s) / Keyword(s):
Feature mapping Structural shapes Structural profiles Ultralight frame structures Equivalent section
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs. 
    more » « less
  2. Abstract This work presents a method for the topology optimization of welded frame structures to minimize the manufacturing cost. The structures considered here consist of assemblies of geometric primitives such as bars and plates that are common in welded frame construction. A geometry projection technique is used to map the primitives onto a continuous density field that is subsequently used to interpolate material properties. As in density-based topology optimization techniques, the ensuing ersatz material is used to perform the structural analysis on a fixed mesh, thereby circumventing the need for re-meshing upon design changes. The distinct advantage of the representation by geometric primitives is the ease of computation of the manufacturing cost in terms of the design parameters, while the geometry projection facilitates the analysis within a continuous design region. The proposed method is demonstrated via the manufacturing-cost-minimization subject to a displacement constraint of 2D bar, 3D bar, and plate structures. 
    more » « less
  3. Summary This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed. 
    more » « less
  4. Abstract Topology optimization has been proved to be an automatic, efficient and powerful tool for structural designs. In recent years, the focus of structural topology optimization has evolved from mono-scale, single material structural designs to hierarchical multimaterial structural designs. In this research, the multi-material structural design is carried out in a concurrent parametric level set framework so that the structural topologies in the macroscale and the corresponding material properties in mesoscale can be optimized simultaneously. The constructed cardinal basis function (CBF) is utilized to parameterize the level set function. With CBF, the upper and lower bounds of the design variables can be identified explicitly, compared with the trial and error approach when the radial basis function (RBF) is used. In the macroscale, the ‘color’ level set is employed to model the multiple material phases, where different materials are represented using combined level set functions like mixing colors from primary colors. At the end of this optimization, the optimal material properties for different constructing materials will be identified. By using those optimal values as targets, a second structural topology optimization is carried out to determine the exact mesoscale metamaterial structural layout. In both the macroscale and the mesoscale structural topology optimization, an energy functional is utilized to regularize the level set function to be a distance-regularized level set function, where the level set function is maintained as a signed distance function along the design boundary and kept flat elsewhere. The signed distance slopes can ensure a steady and accurate material property interpolation from the level set model to the physical model. The flat surfaces can make it easier for the level set function to penetrate its zero level to create new holes. After obtaining both the macroscale structural layouts and the mesoscale metamaterial layouts, the hierarchical multimaterial structure is finalized via a local-shape-preserving conformal mapping to preserve the designed material properties. Unlike the conventional conformal mapping using the Ricci flow method where only four control points are utilized, in this research, a multi-control-point conformal mapping is utilized to be more flexible and adaptive in handling complex geometries. The conformally mapped multi-material hierarchical structure models can be directly used for additive manufacturing, concluding the entire process of designing, mapping, and manufacturing. 
    more » « less
  5. This work presents a method for the continuum-based topology optimization of structures whereby the structure is represented by the union of supershapes. Supershapes are an extension of superellipses that can exhibit variable symmetry as well as asymmetry and that can describe through a single equation, the so-called superformula, a wide variety of shapes, including geometric primitives. As demonstrated by the author and his collaborators and by others in previous work, the availability of a feature-based description of the geometry opens the possibility to impose geometric constraints that are otherwise difficult to impose in density-based or level set-based approaches. Moreover, such description lends itself to direct translation to computer aided design systems. This work is an extension of the author’s group previous work, where it was desired for the discrete geometric elements that describe the structure to have a fixed shape (but variable dimensions) in order to design structures made of stock material, such as bars and plates. The use of supershapes provides a more general geometry description that, using a single formulation, can render a structure made exclusively of the union of geometric primitives. It is also desirable to retain hallmark advantages of existing methods, namely the ability to employ a fixed grid for the analysis to circumvent re-meshing and the availability of sensitivities to use robust and efficient gradient-based optimization methods. The conduit between the geometric representation of the supershapes and the fixed analysis discretization is, as in previous work, a differentiable geometry projection that maps the supershapes parameters onto a density field. The proposed approach is demonstrated on classical problems of 2-dimensional compliance-based topology optimization. 
    more » « less