Fall prevention has always been a crucial topic for injury prevention. Research shows that real-time posture monitoring and subsequent fall prevention are important for the prevention of fall-related injuries. In this research, we determine a real-time posture classifier by comparing classical and deep machine learning classifiers in terms of their accuracy and robustness for posture classification. For this, multiple classical classifiers, including classical machine learning, support vector machine, random forest, neural network, and Adaboost methods, were used. Deep learning methods, including LSTM and transformer, were used for posture classification. In the experiment, joint data were obtained using an RGBD camera. The results show that classical machine learning posture classifier accuracy was between 75% and 99%, demonstrating that the use of classical machine learning classification alone is sufficient for real-time posture classification even with missing joints or added noise. The deep learning method LSTM was also effective in classifying the postures with high accuracy, despite incurring a significant computational overhead cost, thus compromising the real-time posture classification performance. The research thus shows that classical machine learning methods are worthy of our attention, at least, to consider for reuse or reinvention, especially for real-time posture classification tasks. The insight of using a classical posture classifier for large-scale human posture classification is also given through this research.
more »
« less
Video-Based Lifting Action Recognition Using Rank-Altered Kinematic Feature Pairs
ObjectiveTo identify lifting actions and count the number of lifts performed in videos based on robust class prediction and a streamlined process for reliable real-time monitoring of lifting tasks. BackgroundTraditional methods for recognizing lifting actions often rely on deep learning classifiers applied to human motion data collected from wearable sensors. Despite their high performance, these methods can be difficult to implement on systems with limited hardware resources. MethodThe proposed method follows a five-stage process: (1) BlazePose, a real-time pose estimation model, detects key joints of the human body. (2) These joints are preprocessed by smoothing, centering, and scaling techniques. (3) Kinematic features are extracted from the preprocessed joints. (4) Video frames are classified as lifting or nonlifting using rank-altered kinematic feature pairs. (5) A lifting counting algorithm counts the number of lifts based on the class predictions. ResultsNine rank-altered kinematic feature pairs are identified as key pairs. These pairs were used to construct an ensemble classifier, which achieved 0.89 or above in classification metrics, including accuracy, precision, recall, and F1 score. This classifier showed an accuracy of 0.90 in lifting counting and a latency of 0.06 ms, which is at least 12.5 times faster than baseline classifiers. ConclusionThis study demonstrates that computer vision-based kinematic features could be adopted to effectively and efficiently recognize lifting actions. ApplicationThe proposed method could be deployed on various platforms, including mobile devices and embedded systems, to monitor lifting tasks in real-time for the proactive prevention of work-related low-back injuries.
more »
« less
- Award ID(s):
- 2013451
- PAR ID:
- 10562197
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Human Factors: The Journal of the Human Factors and Ergonomics Society
- Volume:
- 67
- Issue:
- 7
- ISSN:
- 0018-7208
- Format(s):
- Medium: X Size: p. 656-672
- Size(s):
- p. 656-672
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)Machine Learning (ML) research has focused on maximizing the accuracy of predictive tasks. ML models, however, are increasingly more complex, resource intensive, and costlier to deploy in resource-constrained environments. These issues are exacerbated for prediction tasks with sequential classification on progressively transitioned stages with “happens-before” relation between them.We argue that it is possible to “unfold” a monolithic single multi-class classifier, typically trained for all stages using all data, into a series of single-stage classifiers. Each single- stage classifier can be cascaded gradually from cheaper to more expensive binary classifiers that are trained using only the necessary data modalities or features required for that stage. UnfoldML is a cost-aware and uncertainty-based dynamic 2D prediction pipeline for multi-stage classification that enables (1) navigation of the accuracy/cost tradeoff space, (2) reducing the spatio-temporal cost of inference by orders of magnitude, and (3) early prediction on proceeding stages. UnfoldML achieves orders of magnitude better cost in clinical settings, while detecting multi- stage disease development in real time. It achieves within 0.1% accuracy from the highest-performing multi-class baseline, while saving close to 20X on spatio- temporal cost of inference and earlier (3.5hrs) disease onset prediction. We also show that UnfoldML generalizes to image classification, where it can predict different level of labels (from coarse to fine) given different level of abstractions of a image, saving close to 5X cost with as little as 0.4% accuracy reduction.more » « less
-
Network intrusion detection systems (NIDS) today must quickly provide visibility into anomalous behavior on a growing amount of data. Meanwhile different data models have evolved over time, each providing a different set of features to classify attacks. Defenders have limited time to retrain classifiers, while the scale of data and feature mismatch between data models can affect the ability to periodically retrain. Much work has focused on classification accuracy yet feature selection is a key part of machine learning that, when optimized, reduces the training time and can increase accuracy by removing poorly performing features that introduce noise. With a larger feature space, the pursuit of more features is not as valuable as selecting better features. In this paper, we use an ensemble approach of filter methods to rank features followed by a voting technique to select a subset of features. We evaluate our approach using three datasets to show that, across datasets and network topologies, similar features have a trivial effect on classifier accuracy after removal. Our approach identifies poorly performing features to remove in a classifier-agnostic manner that can significantly save time for periodic retraining of production NIDS.more » « less
-
Workers performing repetitive lifting tasks are at high risk of developing low-back work-related musculoskeletal disorders. While the Revised NIOSH Lifting Equation (RNLE) is a widely used tool for evaluating lifting-related risks, its reliance on manual measurement limits its scalability and efficiency. This study proposes a computer vision-based framework that automates RNLE computation using video data. The method integrates three key stages: (1) pose estimation to extract 3D joint coordinates, (2) lifting action recognition via kinematic features and a k-TSP classifier, and (3) estimation of RNLE multipliers from joint data. Applied to 40 lifting trials with motion capture-based ground-truth, the system achieved a coefficient of determination of 0.82 and a mean absolute error of 2.72 kg in estimating recommended weight limits. These findings demonstrate the potential of computer vision to automate ergonomic risk assessments. Future work will aim to expand task diversity and integrate coupling assessment for full RNLE coverage.more » « less
-
Abstract Accurate classification of high‐dimensional data is important in many scientific applications. We propose a family of high‐dimensional classification methods based upon a comparison of the component‐wise distances of the feature vector of a sample to the within‐class population quantiles. These methods are motivated by the fact that quantile classifiers based on these component‐wise distances are the most powerful univariate classifiers for an optimal choice of the quantile level. A simple aggregation approach for constructing a multivariate classifier based upon these component‐wise distances to the within‐class quantiles is proposed. It is shown that this classifier is consistent with the asymptotically optimal classifier as the sample size increases. Our proposed classifiers result in simple piecewise‐linear decision rule boundaries that can be efficiently trained. Numerical results are shown to demonstrate competitive performance for the proposed classifiers on both simulated data and a benchmark email spam application.more » « less
An official website of the United States government
