skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification
Machine Learning (ML) research has focused on maximizing the accuracy of predictive tasks. ML models, however, are increasingly more complex, resource intensive, and costlier to deploy in resource-constrained environments. These issues are exacerbated for prediction tasks with sequential classification on progressively transitioned stages with “happens-before” relation between them.We argue that it is possible to “unfold” a monolithic single multi-class classifier, typically trained for all stages using all data, into a series of single-stage classifiers. Each single- stage classifier can be cascaded gradually from cheaper to more expensive binary classifiers that are trained using only the necessary data modalities or features required for that stage. UnfoldML is a cost-aware and uncertainty-based dynamic 2D prediction pipeline for multi-stage classification that enables (1) navigation of the accuracy/cost tradeoff space, (2) reducing the spatio-temporal cost of inference by orders of magnitude, and (3) early prediction on proceeding stages. UnfoldML achieves orders of magnitude better cost in clinical settings, while detecting multi- stage disease development in real time. It achieves within 0.1% accuracy from the highest-performing multi-class baseline, while saving close to 20X on spatio- temporal cost of inference and earlier (3.5hrs) disease onset prediction. We also show that UnfoldML generalizes to image classification, where it can predict different level of labels (from coarse to fine) given different level of abstractions of a image, saving close to 5X cost with as little as 0.4% accuracy reduction.  more » « less
Award ID(s):
2029004
PAR ID:
10430196
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A.
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
35
ISSN:
1049-5258
Page Range / eLocation ID:
4598--4611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment. 
    more » « less
  2. null (Ed.)
    Introduction: Alzheimer’s disease (AD) causes progressive irreversible cognitive decline and is the leading cause of dementia. Therefore, a timely diagnosis is imperative to maximize neurological preservation. However, current treatments are either too costly or limited in availability. In this project, we explored using retinal vasculature as a potential biomarker for early AD diagnosis. This project focuses on stage 3 of a three-stage modular machine learning pipeline which consisted of image quality selection, vessel map generation, and classification [1]. The previous model only used support vector machine (SVM) to classify AD labels which limited its accuracy to 82%. In this project, random forest and gradient boosting were added and, along with SVM, combined into an ensemble classifier, raising the classification accuracy to 89%. Materials and Methods: Subjects classified as AD were those who were diagnosed with dementia in “Dementia Outcome: Alzheimer’s disease” from the UK Biobank Electronic Health Records. Five control groups were chosen with a 5:1 ratio of control to AD patients where the control patients had the same age, gender, and eye side image as the AD patient. In total, 122 vessel images from each group (AD and control) were used. The vessel maps were then segmented from fundus images through U-net. A t-test feature selection was first done on the training folds and the selected features was fed into the classifiers with a p-value threshold of 0.01. Next, 20 repetitions of 5-fold cross validation were performed where the hyperparameters were solely tuned on the training data. An ensemble classifier consisting of SVM, gradient boosting tree, and random forests was built and the final prediction was made through majority voting and evaluated on the test set. Results and Discussion: Through ensemble classification, accuracy increased by 4-12% relative to the individual classifiers, precision by 9-15%, sensitivity by 2-9%, specificity by at least 9-16%, and F1 score by 712%. Conclusions: Overall, a relatively high classification accuracy was achieved using machine learning ensemble classification with SVM, random forest, and gradient boosting. Although the results are very promising, a limitation of this study is that the requirement of needing images of sufficient quality decreased the amount of control parameters that can be implemented. However, through retinal vasculature analysis, this project shows machine learning’s high potential to be an efficient, more cost-effective alternative to diagnosing Alzheimer’s disease. Clinical Application: Using machine learning for AD diagnosis through retinal images will make screening available for a broader population by being more accessible and cost-efficient. Mobile device based screening can also be enabled at primary screening in resource-deprived regions. It can provide a pathway for future understanding of the association between biomarkers in the eye and brain. 
    more » « less
  3. Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks. 
    more » « less
  4. In this paper we investigate image classification with computational resource lim- its at test time. Two such settings are: 1. anytime classification, where the net- work’s prediction for a test example is progressively updated, facilitating the out- put of a prediction at any time; and 2. budgeted batch classification, where a fixed amount of computation is available to classify a set of examples that can be spent unevenly across “easier” and “harder” inputs. In contrast to most prior work, such as the popular Viola and Jones algorithm, our approach is based on convolutional neural networks. We train multiple classifiers with varying resource demands, which we adaptively apply during test time. To maximally re-use computation between the classifiers, we incorporate them as early-exits into a single deep convolutional neural network and inter-connect them with dense connectivity. To facilitate high quality classification early on, we use a two-dimensional multi-scale network architecture that maintains coarse and fine level features all-throughout the network. Experiments on three image-classification tasks demonstrate that our framework substantially improves the existing state-of-the-art in both settings. 
    more » « less
  5. Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale.  This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets. 
    more » « less