skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geography of symplectic Lefschetz fibrations and rational blowdowns
We produce simply-connected, minimal, symplectic Lefschetz fibrations realizing all the lattice points in the symplectic geography plane below the Noether line. This provides asymplecticextension of the classical works populating the complex geography plane with holomorphic Lefschetz fibrations. Our examples are obtained by rationally blowing down Lefschetz fibrations with clustered nodal fibers, the total spaces of which are potentially new homotopy elliptic surfaces. Similarly, clustering nodal fibers on higher genera Lefschetz fibrations on standard rational surfaces, we get rational blowdown configurations that yield new constructions of small symplectic exotic 4 4 –manifolds. We present an example of a construction of a minimal symplectic exotic C P 2 #<#comment/> 5 C P ¯<#comment/> 2 {\mathbb {CP}}{}^{2}\# \, 5 \overline {\mathbb {CP}}{}^{2} through this procedure applied to a genus– 3 3 fibration.  more » « less
Award ID(s):
2005327
PAR ID:
10562428
Author(s) / Creator(s):
; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  2. In this brief note, we investigate the C P 2 \mathbb {CP}^2 -genus of knots, i.e., the least genus of a smooth, compact, orientable surface in C P 2 ∖<#comment/> B 4 ˚<#comment/> \mathbb {CP}^2\smallsetminus \mathring {B^4} bounded by a knot in S 3 S^3 . We show that this quantity is unbounded, unlike its topological counterpart. We also investigate the C P 2 \mathbb {CP}^2 -genus of torus knots. We apply these results to improve the minimal genus bound for some homology classes in C P 2 #<#comment/> C P 2 \mathbb {CP}^2\# \mathbb {CP} ^2
    more » « less
  3. We show that every finite abelian group occurs as the group of rational points of an ordinary abelian variety over F 2 \mathbb {F}_2 , F 3 \mathbb {F}_3 and F 5 \mathbb {F}_5 . We produce partial results for abelian varieties over a general finite field  F q \mathbb {F}_q . In particular, we show that certain abelian groups cannot occur as groups of rational points of abelian varieties over F q \mathbb {F}_q when q q is large. Finally, we show that every finite cyclic group arises as the group of rational points of infinitely many simple abelian varieties over  F 2 \mathbb {F}_2
    more » « less
  4. We show that if L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 are linear transformations from Z d \mathbb {Z}^d to Z d \mathbb {Z}^d satisfying certain mild conditions, then, for any finite subset A A of Z d \mathbb {Z}^d , | L 1 A + L 2 A | ≥<#comment/> ( | det ( L 1 ) | 1 / d + | det ( L 2 ) | 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |\mathcal {L}_1 A+\mathcal {L}_2 A|\geq \left ( |\det (\mathcal {L}_1)|^{1/d}+|\det (\mathcal {L}_2)|^{1/d} \right )^d|A|- o(|A|). \end{equation*} This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 . As an application, we prove a lower bound for | A + λ<#comment/> ⋅<#comment/> A | |A + \lambda \cdot A| when A A is a finite set of real numbers and λ<#comment/> \lambda is an algebraic number. In particular, when λ<#comment/> \lambda is of the form ( p / q ) 1 / d (p/q)^{1/d} for some p , q , d ∈<#comment/> N p, q, d \in \mathbb {N} , each taken as small as possible for such a representation, we show that | A + λ<#comment/> ⋅<#comment/> A | ≥<#comment/> ( p 1 / d + q 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |A + \lambda \cdot A| \geq (p^{1/d} + q^{1/d})^d |A| - o(|A|). \end{equation*} This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case λ<#comment/> = 2 \lambda = \sqrt {2}
    more » « less
  5. We consider the equivariant wave maps equation R 1 + 2 →<#comment/> S 2 \mathbb {R}^{1+2} \to \mathbb {S}^2 , in all equivariance classes k ∈<#comment/> N k \in \mathbb {N} . We prove that every finite energy solution resolves, continuously in time, into a superposition of asymptotically decoupling harmonic maps and free radiation. 
    more » « less