skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Numerical Continuation Approach using Monodromy to Solve the Forward Kinematics of Cable-Driven Parallel Robots with Sagging Cables
Designing and analyzing large cable-driven parallel robots (CDPRs) for precision tasks can be challenging, as the position kinematics are governed by kineto-statics and cable sag equations. Our aim is to find all equilibria for a given set of unstrained cable lengths using numerical continuation techniques. The Irvine sagging cable model contains both non-algebraic and multi-valued functions. The former removes the guarantee of finiteness on the number of isolated solutions, making homotopy start system construction less clear. The latter introduces branch cuts, which could lead to failures during path tracking. We reformulate the Irvine model to eliminate multi-valued functions and propose a heuristic numerical continuation method based on monodromy, removing the reliance on a start system. We demonstrate this method on an eight-cable spatial CDPR, resulting in a well-constrained non-algebraic system with 31 equations. The method is applied to four examples from literature that were previously solved in bounded regions. Our method computes the previously reported solutions along with new solutions outside those bounds much faster, showing that this numerical method enhances existing approaches for comprehensively analyzing CDPR kineto-statics.  more » « less
Award ID(s):
2144732 2041789
PAR ID:
10562611
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Mechanism and Machine Theory
Volume:
195
Issue:
C
ISSN:
0094-114X
Page Range / eLocation ID:
105609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Larochelle, Pierre; McCarthy, J Michael; Lusk, Craig P (Ed.)
    An algorithm is presented for computing the tension in an elastic cable subject to sagging under its own weight, a problem highly relevant in tethered systems such as cable-driven parallel robots. This requires solving the two coupled equations of the Irvine cable model, which give the endpoint position as a function of vertical and horizontal components of tension. Via a change of variables, we reformulate this system as a pair of uncoupled equations, which are shown to have a unique solution. We develop an efficient numerical procedure to solve one of these, after which closed-form formulas provide the solution of the second equation and ultimately the tension components. 
    more » « less
  2. The problem of geolocation of a radiofrequency transmitter via time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is given as a system of polynomial equations. This allows for the use of homotopy continuation-based methods from numerical algebraic geometry. A novel geolocation algorithm employs numerical algebraic geometry techniques in conjunction with the random sample consensus (RANSAC) method. This is all developed and demonstrated in the setting of only FDOA measurements, without loss of generality. Additionally, the problem formulation as polynomial systems immediately provides lower bounds on the number of receivers or measurements required for the solution set to consist of only isolated points. 
    more » « less
  3. The dynamic complexity of robots and mechatronic systems often pertains to the hybrid nature of dynamics, where governing equations consist of heterogenous equations that are switched depending on the state of the system. Legged robots and manipulator robots experience contact-noncontact discrete transitions, causing switching of governing equations. Analysis of these systems have been a challenge due to the lack of a global, unified model that is amenable to analysis of the global behaviors. Composition operator theory has the potential to provide a global, unified representation by converting them to linear dynamical systems in a lifted space. The current work presents a method for encoding nonlinear heterogenous dynamics into a high dimensional space of observables in the form of Koopman operator. First, a new formula is established for representing the Koopman operator in a Hilbert space by using inner products of observable functions and their composition with the governing state transition function. This formula, called Direct Encoding, allows for converting a class of heterogenous systems directly to a global, unified linear model. Unlike prevalent data-driven methods, where results can vary depending on numerical data, the proposed method is globally valid, not requiring numerical simulation of the original dynamics. A simple example validates the theoretical results, and the method is applied to a multi-cable suspension system. 
    more » « less
  4. Abstract In this article, we investigate the quantitative unique continuation properties of complex-valued solutions to drift equations in the plane.We consider equations of the form Δ ⁢ u + W ⋅ ∇ ⁡ u = 0 {\Delta u+W\cdot\nabla u=0} in ℝ 2 {\mathbb{R}^{2}} ,where W = W 1 + i ⁢ W 2 {W=W_{1}+iW_{2}} with each W j {W_{j}} being real-valued.Under the assumptions that W j ∈ L q j {W_{j}\in L^{q_{j}}} for some q 1 ∈ [ 2 , ∞ ] {q_{1}\in[2,\infty]} , q 2 ∈ ( 2 , ∞ ] {q_{2}\in(2,\infty]} and that W 2 {W_{2}} exhibits rapid decay at infinity,we prove new global unique continuation estimates.This improvement is accomplished by reducing our equations to vector-valued Beltrami systems.Our results rely on a novel order of vanishing estimate combined with a finite iteration scheme. 
    more » « less
  5. In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are different from the multi- dimensional Riemann problems widely studied in the literature. Our computations provide numerical evidence of the existence of initial value problems with multiple solutions, thus revealing a fundamental obstruction toward the well-posedness of the governing equations. The compressible Euler equations are solved using the positivity-preserving discontinuous Galerkin method. 
    more » « less