skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Real-Time Algorithm for Computing the Tension Force in a Suspended Elastic Sagging Cable
An algorithm is presented for computing the tension in an elastic cable subject to sagging under its own weight, a problem highly relevant in tethered systems such as cable-driven parallel robots. This requires solving the two coupled equations of the Irvine cable model, which give the endpoint position as a function of vertical and horizontal components of tension. Via a change of variables, we reformulate this system as a pair of uncoupled equations, which are shown to have a unique solution. We develop an efficient numerical procedure to solve one of these, after which closed-form formulas provide the solution of the second equation and ultimately the tension components.  more » « less
Award ID(s):
2144732
PAR ID:
10562618
Author(s) / Creator(s):
; ; ;
Editor(s):
Larochelle, Pierre; McCarthy, J Michael; Lusk, Craig P
Publisher / Repository:
Springer
Date Published:
ISBN:
978-3-031-60617-5
Page Range / eLocation ID:
179-187
Format(s):
Medium: X
Location:
St. Petersburg, Florida
Sponsoring Org:
National Science Foundation
More Like this
  1. Structures containing tension-only members, i.e., cables, are widely used in engineered structures (e.g., suspension and cable-stayed bridges, tents, and bicycle wheels) and are also found in nature (e.g., spider webs). We seek to use the ground structure method to obtain optimal cable network configurations. The structures are modeled using principles of nonlinear elasticity that allow for large displacements, i.e., global configuration changes, and large deformations. The material is characterized by a hyperelastic constitutive relation in which the strain energy is nonzero only when the axial stretch of a member is greater than or equal to one (i.e., tension-only behavior). We maximize the stationary potential energy of the equilibrated system, which avoids the need for an additional adjoint equation in computing the derivatives needed for the solution of the optimization problem. Several examples demonstrate the capabilities of the proposed formulation for topology optimization of cable networks. Motivated by nature, a spider web–inspired cable net is designed. 
    more » « less
  2. null (Ed.)
    Inclined cables used in bridges or other infrastructures are vulnerable to unsteady wind-induced loads producing moderate- to large-amplitude vibration that may result in damage or failure of the cables, resulting in catastrophic failure of the structure they secure. In the present study, wind-induced response of an inclined smooth cable was studied through wind tunnel measurements using a flexible cable model for a better understanding of the vibration characteristics of structural cables in atmospheric boundary layer wind. For this purpose, in-plane and out-of-plane responses of a sagged and a non-sagged flexible cable were recorded by four accelerometers. Four cases with different yaw and inclination angles of a cable with approximate sag ratios of 1/10 were studied to investigate the wind directionality effect on its excitation mode(s) and response amplitude. Cable tension was also measured during all experiments to assess the correlation of wind speed, excitation vibration mode, and natural frequency of the cable with change in cable tension. Additionally, two inclined cables with no sag were tested to determine the influence of sag of a cable on its vibration characteristics. In the second part of this study, a series of finite element analyses were conducted to predict the wind-induced aerodynamic damping of an inclined bridge cable. Experimental results showed that excitation mode(s) of a cable depend on wind speed, inclination angle, and sag ratio and cable tension. First, second, and third vibration modes were observed at a low wind speed for different test cases, whereas higher vibration modes were observed to contribute to the cable response at high wind speeds. Moreover, it was seen that the cable tension significantly increased with wind speed resulting in increased value of the excited natural frequency. Numerical results obtained through finite element analysis of an inclined full-scale cable showed that the criteria that are based on section models can underestimate the critical reduced velocity for dry cable galloping. 
    more » « less
  3. This paper considers the self-localization of a tethered drone without using a cable-tension force sensor in GPS-denied environments. The original problem is converted to a state-estimation problem, where the cable-tension force and the three-dimensional position of the drone with respect to a ground platform are estimated using an extended Kalman filter (EKF). The proposed approach uses the data reported by the onboard electric motors (i.e., the pulse width modulation (PWM) signals), accelerometers, gyroscopes, and altimeter, embedded in the commercial-of-the-shelf (COTS) inertial measurement units (IMU). A system-identification experiment was conducted to determine the model that computes the drone thrust force using the PWM signals. The proposed approach was compared with an existing work that assumes known cable-tension force. Simulation results show that the proposed approach produces estimates with less than 0.3-m errors when the actual cable-tension force is greater than 1 N. 
    more » « less
  4. null (Ed.)
    Abstract Mobile Cable-Driven Parallel Manipulators (m-CDPM) are a sub-class of CDPM with greater-capabilities (antagonistic cable-tensioning and reconfigurability) by virtue of mobility of the base-winches. In past work, we had also explored creation of adjustable spring-stiffness modules, in-line with cables, which decouple cable-stiffness and cable-tensions. All these internal-freedoms allow an m-CDPM to track desired trajectories while equilibrating end-effector wrenches and improving lateral disturbance-rejection. However, parameter and configuration selection is key to unlocking these benefits. To this end, we consider an approach to partition task-execution into a primary (fast) winch-tension control and secondary (slow) reconfiguration and joint-stiffness modulation. This would enable a primary trajectory-tracking task together with secondary task-space stiffness tailoring, using system-reconfiguration and joint-stiffness modulation. In this paper, we limit our scope to feasibility-evaluation to achieve the stiffness modulation as a secondary goal within an offline design-optimization setting (but with an eye towards real-time implementation). These aspects are illustrated in the context of a 3-PRP m-CDPM for tracking a desired trajectory within its wrench-feasible workspace. The secondary-task is the directional-alignment and shaping of the stiffness ellipsoid to shape the disturbance-rejection characteristics along the trajectory. The optimization is solved through constrained minimization of a multi-objective weighted cost function subject to non-linear workspace feasibility, and inequality stiffness and tension constraints. 
    more » « less
  5. We derive a set of equations in conformal variables that describe a potential flow of an ideal two-dimensional inviscid fluid with free surface in a bounded domain. This formulation is free of numerical instabilities present in the equations for the surface elevation and potential derived in Dyachenko et al.  ( Plasma Phys. Rep. vol. 22 (10), 1996, pp. 829–840) with some restrictions on analyticity relieved, which allows to treat a finite volume of fluid enclosed by a free-moving boundary. We illustrate with a comparison of numerical simulations of the Dirichlet ellipse, an exact solution for a zero surface tension fluid. We demonstrate how the oscillations of the free surface of a unit disc droplet may lead to breaking of one droplet into two when surface tension is present. 
    more » « less