In the design of high-performance heat and mass transfer devices such as liquid-cooled heat sinks, catalytic reactors, and catalytic convertors, parallel mini/microchannels are favored owing to their special potentials. Offering low pressure drop, providing high transfer surface area to volume ratio, and being easy to manufacture and optimize have been drawing thermal and chemical engineers attention to parallel channels for past decades. When working with parallel channels, the challenge of flow maldistribution is commonly faced which decreases their efficiency significantly. System total pressure drop and flow uniformity are two parameters that determine the system performance. In the present study, a variety of practical ideas, aiming to enhance parallel channels performance, are studied numerically. Inventive manifold designs with high hydraulic performance are created through the course of this study. The results of these designs are compared with basic conventional designs which show substantial enhancement. Analyzing less successful designs lead us to deep understanding of fluid dynamics in parallel channel heat and mass transfer devices. 
                        more » 
                        « less   
                    
                            
                            Using entropy balance to determine multiphase flow distribution in thermally decoupled parallel channels with shared inlet and outlet headers
                        
                    
    
            Multiphase flow with boiling in parallel channels is often an efficient approach to managing heat and energy distribution in several engineering systems. However, two-phase flow with heating in parallel channels is prone to maldistribution, which can result in sub-optimal performance and, in some cases, permanent damage to the system. This challenge requires accurate flow modeling in parallel channels to mitigate or design against the adverse effect of two-phase flow maldistribution. The nonlinear nature of the multiphase flow model can yield multiple solutions for the same operating condition, creating significant challenges in predicting flow distribution. This study addresses this challenge by applying the entropy balance analysis and the conservation of mass, momentum, and energy to predict two-phase flow distribution in two thermally isolated parallel channels with a numerical model. Our model predictions and experiments show that equally distributed flow can become severely maldistributed with a decrease in flow rate, accompanied by a significant (>30%) change in the entropy generation rate. We show that the entropy balance analysis can distinguish between stable and unstable flows and identify the most feasible flow distribution in thermally decoupled parallel channels. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1944323
- PAR ID:
- 10562732
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 36
- Issue:
- 5
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Flow bursts are a major component of transport within the plasma sheet and auroral oval (where they are referred to as flow channels), and lead to a variety of geomagnetic disturbances as they approach the inner plasma sheet (equatorward portion of the auroral oval). However, their two-dimensional structure as they approach the inner plasma sheet has received only limited attention. We have examined this structure using both the Rice Convection Model (RCM) and ground-based radar and all sky imager observations. As a result of the energy dependent magnetic drift, the low entropy plasma of a flow burst spreads azimuthally within the inner plasma sheet yielding specific predictions of subauroral polarization stream (SAPS) and dawnside auroral polarization stream (DAPS) enhancements that are related to the field-aligned currents associated with the flow channel. Flow channels approximately centered between the dawn and dusk large-scale convection cells are predicted to give significant enhancements of both SAPS and DAPS, whereas flow channel further toward the dusk (dawn) convection cell show a far more significant enhancement of SAPS (DAPS) than for DAPS (SAPS). We present observations for cases having good coverage of flow channels as they approach the equatorward portion of the auroral oval and find very good qualitative agreement with the above RCM predictions, including the predicted differences with respect to flow burst location. Despite there being an infinite variety of flow channels’ plasma parameters and of background plasma sheet and auroral oval conditions, the observations show the general trends predicted by the RCM simulations with the idealized parameters. This supports that RCM predictions of the azimuthal spread of a low-entropy plasma sheet plasma and its associated FAC and flow responses give a realistic physical description of the structure of plasma sheet flow bursts (auroral oval flow channels) as they reach the inner plasma sheet (near the equatorward edge of the auroral oval).more » « less
- 
            Flow fluctuations that are commonly associated with multiphase flow in porous media are studied using concepts from non-equilibrium thermodynamic and statistical mechanics. We investigate how the Green–Kubo formulation of the fluctuation dissipation theorem can be used to predict the transport coefficient from the two-phase extension of Darcy's law. Flow rate-time series data are recorded at the millisecond timescale using a novel experimental setup that allows for the determination of flow fluctuation statistics. By using Green–Kubo relations, a transport coefficient is predicted based on the integrated autocorrelation function. Notably, this coefficient aligned closely with the total effective phase mobility computed using Darcy's equation for multiphase flow, particularly in scenarios where a linear relationship between flow rate and pressure gradient was observed. Our results open a new field of coefficient explorations where microscale fluctuations during multiphase flow are directly linked to macroscale parameters.more » « less
- 
            Abstract Power intensification and miniaturization of electronics and energy systems are causing a critical challenge for thermal management. Single-phase heat transfer mechanisms including natural and forced convection of air and liquids cannot meet the ever-increasing demands. Two-phase heat transfer modes, such as evaporation, pool boiling, flow boiling, have much higher cooling capacities but are limited by a variety of practical instabilities, e.g., the critical heat flux (CHF), aka departure from nucleate boiling (DNB) in the nuclear industry, flow maldistribution, flow reversal, among others. These instabilities are often triggered suddenly during normal operation, and if not identified and mitigated in time, will lead to overheating issues and detrimental device failures. For example, when CHF is triggered during pool boiling, the device temperature can ramp up in the order of 150 °C/min. It is thus critical to implement real-time detection and mitigation algorithms for two-phase cooling. In the present work, we have developed an accurate and reliable technology for fault detection of high-performance two-phase cooling systems by coupling acoustic emission (AE) with multimodal fusion using deep learning. We have leveraged the contact AE sensor attached to the heater and hydrophones immersed in the working fluid to enable non-invasive fault detection.more » « less
- 
            The rapid advancement of 5G technology necessitates the development of efficient thermal management solutions to handle the increased heat dissipation demands of high-power electronic components. This study presents an optimization strategy for a microchannel cold plate designed for a prototype 5G front-end system, featuring four 22-Watt chips as heat sources. The cold plate, constructed from aluminum, incorporates multiple rectangular flow channels evenly spaced to facilitate uniform heat distribution, with an inlet runner. The primary objective of this study is to optimize the geometry of the flow channels and the coolant mass flow rate at the runner entrance to minimize entropy generation, thereby enhancing the heat dissipation capability of the cold plate while minimizing pressure drop. Given these challenges, this study aims to develop an optimization strategy for cold plate design. This research applies Bayesian Optimization (BO), and Response Surface Methodology (RSM) paired with Genetic Algorithm (GA), and FMINCON (sequential quadratic programming, a built-in optimizer of MATLAB). These methods are utilized to fine-tune the channel dimensions and coolant flow rate, and the data that is used to evaluate entropy of the system is obtained from conjugate heat transfer simulations solved by Ansys Fluent. By using the Gaussian Process model to build response surface and predicting function of entropy generation, the results indicate that BO outperforms RSM paired with GA and FMINCON in terms of entropy reduction with same number of samples.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    