Mode-multiplexed photonic integrated vector dot-product core from inverse design
Photonic computing has the potential to harness the full degrees of freedom (DOFs) of the light field, including the wavelength, spatial mode, spatial location, phase quadrature, and polarization, to achieve a higher level of computing parallelism and scalability than digital electronic processors. While multiplexing using the wavelength and other DOFs can be readily integrated on silicon photonics platforms with compact footprints, conventional mode-division multiplexed (MDM) photonic designs occupy areas exceeding tens to hundreds of microns for a few spatial modes, significantly limiting their scalability. Here, we utilize inverse design to demonstrate an ultracompact photonic computing core that calculates vector dot products based on MDM coherent mixing. Our dot-product core integrates the functionalities of two-mode multiplexers and one multimode coherent mixer within a nominal footprint of 5 μm×3 μm. We have experimentally demonstrated computing examples on the fabricated dot-product core, including complex number multiplication and motion estimation using optical flow. The compact dot-product core design enables large-scale on-chip integration in a parallel photonic computing primitive cluster for high-throughput scientific computing and computer vision tasks.
more »
« less
- Award ID(s):
- 1932858
- PAR ID:
- 10562802
- Publisher / Repository:
- Chinese Laser Press
- Date Published:
- Journal Name:
- Photonics Research
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2327-9125
- Page Range / eLocation ID:
- 2279
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present an analytical and numerical study of electromagnetic modes in micro- and nano-fibers (MNFs) where the electric and magnetic fields of the modes are not necessarily orthogonal to each other. We first investigate these modes for different fiber structures including circular- and rectangular-core fibers as well as photonic crystal fibers. We then discuss two specific applications of these modes: (1) generation of hypothetical axions that are coupled to the electromagnetic fields through the dot product of electric and magnetic fields of a mode,E→⋅B→, and (2) a new type of optical trap (optical tweezers) for chiral atoms with magneto-electric cross coupling, where the confining potential again is proportional toE→⋅B→.more » « less
-
A coherent multi-dimensional photonic tensor accelerator performing high-speed matrix-matrix multiplication is proposed and demonstrated. A pattern recognition experiment is demonstrated at a 25Gbps modulation speed exploiting orthogonal dimensions of light including time, wavelength, and spatial mode.more » « less
-
Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to utilization such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index ofng = 73 and a strong localization of the modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when integrated with quantum cascade laser and detectors.more » « less
-
Abstract Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold, corresponding to a threshold density of 4.92 mW μm −2 , and a 269 Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290 MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.more » « less
An official website of the United States government

