skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Social interactions and information use by foraging seabirds
What do seabirds perceive about the world? How do they do so? And how do they use the information available to them to make foraging decisions? Social cues provide seabirds with information about the location of prey. This can, of course, be passive and not involve higher‐order cognitive processes (e.g. simple conspecific or heterospecific attraction). However, seabirds display many behaviours that promote learning and the transmission of information between individuals: the vast majority of seabirds are colonial living, have an extended juvenile phase that affords them time to learn, routinely form intra‐ and interspecific associations, and can flexibly deploy a combination of foraging tactics. It is worth evaluating their foraging interactions in light of this. This review describes how seabirds use social information both at the colony and at sea to forage, and discusses the variation that exists both across species and amongst individuals. It is clear that social interactions are a critical and beneficial component of seabird foraging, with most of the variation concerning the way and extent to which social information is used, rather than whether it is used. While it may seem counterintuitive that large groups of potential competitors congregating at a patch can result in foraging gains, such aggregations can alter species dynamics in ways that promote coexistence. This review explores how competitive interference at a patch can be mitigated by behavioural modifications and niche segregation. Utilising others for foraging success (e.g.viasocial cues and facilitation at a patch) is likely to make population declines particularly damaging to seabirds if the quantity or quality of their social foraging interactions is reduced. Environmental changes have the potential to disrupt their social networks and thus, how these species obtain food and transfer information.  more » « less
Award ID(s):
2011454
PAR ID:
10562876
Author(s) / Creator(s):
Publisher / Repository:
Cambridge Philosophical Society
Date Published:
Journal Name:
Biological Reviews
Volume:
99
Issue:
5
ISSN:
1464-7931
Page Range / eLocation ID:
1717-1735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To effectively forage in natural environments, organisms must adapt to changes in the quality and yield of food sources across multiple timescales. Individuals foraging in groups act based on both their private observations and the opinions of their neighbours. How do these information sources interact in changing environments? We address this problem in the context of honeybee colonies whose inhibitory social interactions promote adaptivity and consensus needed for effective foraging. Individual and social interactions within a mathematical model of collective decisions shape the nutrition yield of a group foraging from feeders with temporally switching quality. Social interactions improve foraging from a single feeder if temporal switching is fast or feeder quality is low. When the colony chooses from multiple feeders, the most beneficial form of social interaction is direct switching, whereby bees flip the opinion of nest-mates foraging at lower-yielding feeders. Model linearization shows that effective social interactions increase the fraction of the colony at the correct feeder (consensus) and the rate at which bees reach that feeder (adaptivity). Our mathematical framework allows us to compare a suite of social inhibition mechanisms, suggesting experimental protocols for revealing effective colony foraging strategies in dynamic environments. 
    more » « less
  2. Selection of habitat is a key determinant of reproductive success, and the process of finding and choosing these sites is often influenced by the presence of conspecifics. Many bats frequently switch roosts, and some bats repeatedly find new roosts. To find roosts with conspecifics or group members, bats can use social cues. However, most research on how bats use social cues for roost-finding has focused on acoustic cues. Here, we review and discuss the evidence for bat roost selection using scent cues from guano and urine stains, which are present at most bat roosts. We outline reasons why bats might, or might not, use scent in roost detection and selection, and we review evidence on the possible use of guano and urine in roost-finding from eight studies with 12 bat species (across four families). Overall, the sparse evidence that exists indicates that scent cues from guano and urine are not a strong and consistent lure in the species and situations that were tested. Most studies had unclear results or found no effect. Two of the eight studies found weak experimental evidence for bats using guano or urine to select a roosting site. Even if guano and urine can indicate the presence of bats at a roost, it is possible that the resulting olfactory cues do not contain sufficient social information to be used in roost selection, in contrast to olfactory cues from scent marking. Studies of how bats use sensory cues beyond sound could contribute to a better understanding of bat social behavior and roosting ecology. 
    more » « less
  3. Abstract Understanding the drivers and impacts of spatiotemporal variation in species abundance on community trajectories is key to understanding the factors contributing to ecosystem resilience. Temporal variation in species trajectories across patches can provide compensation for species loss and can influence successional patterns. However, little is known about the underlying mechanisms that lead to patterns of species or spatial compensation and how those patterns may be mediated by consumer–resource relationships. Here we describe an experiment testing whether habitat attributes (e.g., structural complexity and spatial heterogeneity) mediate the effects of herbivory on tropical marine macroalgal communities by reducing accessibility and detectability, respectively, leading to variable trajectories among algal species at community (within patch) and metacommunity (i.e., among patch) scales. Reduced accessibility (greater habitat complexity) decreased the effects of herbivory (i.e., depressed consumption rate, increased algal species richness), and both accessibility and detectability (spatial heterogeneity) influenced algal community structure. Moreover, decreased accessibility at the community scale and a mosaic of accessibility at the metacommunity scale led to variation in community assembly. We suggest that habitat attributes can be important influencers of consumer–resource interactions on coral reefs, which in turn can increase species diversity, promote species succession, and enhance stability in algal metacommunities. 
    more » « less
  4. Abstract Avian mixed-species flocks are ubiquitous across habitats and a model for studying how heterospecific sociality influences the behavior and composition of animal communities. Here, we review the literature on mixed-species flocks and argue that a renewed focus on individual-level interactions among flock members can transform our understanding of this iconic, avian social system. Specifically, we suggest that an individual perspective will further our understanding of (1) how inter- and intraspecific variation in flock participation links to fitness costs and benefits, (2) the implications of familiarity between individuals in structuring mixed-species flock communities, and (3) how social roles within mixed-species flocks are related to social behavior within and across species. We summarize studies that use an individual perspective in each of these areas and discuss knowledge from conspecific social behavior to posit more broadly how individuals may shape mixed-species flocks. We encourage research approaches that incorporate individual variation in traits, relationships, and social roles in their assessment of mixed-species flocking dynamics. We propose that the analysis of individual variation in behavior will be particularly important for explicitly identifying fitness outcomes that led to the evolution of mixed-species flocks, which in turn affect community structure and resilience. 
    more » « less
  5. Abstract Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.We used repeated stable isotope measurements (δ13C, δ15N;N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change. 
    more » « less