Abstract Extreme flooding events are becoming more frequent and costly, and impacts have been concentrated in cities where exposure and vulnerability are both heightened. To manage risks, governments, the private sector, and households now rely on flood hazard data from national‐scale models that lack accuracy in urban areas due to unresolved drainage processes and infrastructure. Here we assess the uncertainties of First Street Foundation (FSF) flood hazard data, available across the U.S., using a new model (PRIMo‐Drain) that resolves drainage infrastructure and fine resolution drainage dynamics. Using the case of Los Angeles, California, we find that FSF and PRIMo‐Drain estimates of population and property value exposed to 1%‐ and 5%‐annual‐chance hazards diverge at finer scales of governance, for example, by 4‐ to 18‐fold at the municipal scale. FSF and PRIMo‐Drain data often predict opposite patterns of exposure inequality across social groups (e.g., Black, White, Disadvantaged). Further, at the county scale, we compute a Model Agreement Index of only 24%—a ∼1 in 4 chance of models agreeing upon which properties are at risk. Collectively, these differences point to limited capacity of FSF data to confidently assess which municipalities, social groups, and individual properties are at risk of flooding within urban areas. These results caution that national‐scale model data at present may misinform urban flood risk strategies and lead to maladaptation, underscoring the importance of refined and validated urban models. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Urban form and structure explain variability in spatial inequality of property flood risk among US counties
                        
                    
    
            Abstract Understanding the relationship between urban form and structure and spatial inequality of property flood risk has been a longstanding challenge in urban planning and emergency management. Here we explore eight urban form and structure features to explain variability in spatial inequality of property flood risk among 2567 US counties. Using datasets related to human mobility and facility distribution, we identify notable variation in spatial inequality of property flood risk, particularly in coastline and metropolitan counties. The results reveal variations in spatial inequality of property flood risk can be explained based on principal components of development density, economic activity, and centrality and segregation. The classification and regression tree model further demonstrates how these principal components interact and form pathways that explain spatial inequality of property flood risk. The findings underscore the critical role of urban planning in mitigating flood risk inequality, offering valuable insights for crafting integrated strategies as urbanization progresses. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832662
- PAR ID:
- 10563012
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Compound flooding events are a threat to many coastal regions and can have widespread socio-economic implications. However, their frequency of occurrence, underlying flood drivers, and direct link to past socio-economic losses are largely unknown despite being key to supporting risk and adaptation assessments. Here, we present an impact-based analysis of compound flooding for 203 coastal counties along the U.S. Gulf and East coasts by combining data from multiple flood drivers and socio-economic loss information from 1980 to 2018. We find that ~80% of all flood events recorded in our study area were compound rather than univariate. In addition, we show that historical compound flooding events in most counties were driven by more than two flood drivers (hydrological, meteorological, and/or oceanographic) and distinct spatial clusters exist that exhibit variability in the underlying driver of compound flood events. Furthermore, we find that in more than 80% of the counties, over 80% of recorded property and crop losses were linked to compound flooding. Nearly 80% of counties have a higher median loss from compound than univariate events. For these counties, the median property loss is over 26 times greater, and the median crop loss is over 76 times greater for compound events on average. Our analysis overcomes some of the limitations of previous compound-event studies based on pre-defined flood drivers and offers new insights into the complex relationship between hazards and associated socio-economic impacts.more » « less
- 
            Abstract Climate change impacts threaten the stability of the US housing market. In response to growing concerns that increasing costs of flooding are not fully captured in property values, we quantify the magnitude of unpriced flood risk in the housing market by comparing the empirical and economically efficient prices for properties at risk. We find that residential properties exposed to flood risk are overvalued by US$121–US$237 billion, depending on the discount rate. In general, highly overvalued properties are concentrated in counties along the coast with no flood risk disclosure laws and where there is less concern about climate change. Low-income households are at greater risk of losing home equity from price deflation, and municipalities that are heavily reliant on property taxes for revenue are vulnerable to budgetary shortfalls. The consequences of these financial risks will depend on policy choices that influence who bears the costs of climate change.more » « less
- 
            Urban spatial structure is a critical component of urban planning and development, and among the different urban spatial structure strategies, ‘polycentric mega-city region (PMR)’ has recently received great research and public policy interest in China. However, there is a lack of systematic understanding on the spatiality of PMR from a pluralistic perspective. This study aims to fill this gap by investigating the spatiality of PMR in the Yangtze River Delta Urban Agglomeration (YRDUA) using city-level data on gross domestic product (GDP), population share, and urban income growth for the period 2000–2013. The results reveal that economically, the YRDUA is experiencing greater polycentricity, but in terms of social welfare, the region manifests growing monocentricity. We further find that the triple transition framework (marketization, urbanization, and decentralization) can greatly explain the observed patterns. Although the economic goals are accomplished with better spatial linkages and early economic development policies, inequality in spatial distribution of public services and the continuing legacy of central planning remain barriers for the YRDUA to emerge as a successful PMR. The results of this research offer meaningful insights on the impact of polycentric policies in the YRDUA and support policymakers in the implementation of appropriate urban spatial development strategies.more » « less
- 
            Abstract While conceptual definitions have provided a foundation for measuring inequality of access and resilience in urban facilities, the challenge for researchers and practitioners alike has been to develop analytical support for urban system development that reduces inequality and improves resilience. Using 30 million large-scale anonymized smartphone-location data, here, we calibrate models to optimize the distribution of facilities and present insights into the interplay between equality and resilience in the development of urban facilities. Results from ten metropolitan counties in the United States reveal that inequality of access to facilities is due to the inconsistency between population and facility distributions, which can be reduced by minimizing total travel costs for urban populations. Resilience increases with more equitable facility distribution by increasing effective embeddedness ranging from 10% to 30% for different facilities and counties. The results imply that resilience and equality are related and should be considered jointly in urban system development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
