skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metadata for zooplankton gut DNA 18S ribosomal DNA sequences taken during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic and Fram Straight from November 2019 to September 2020
These files contain metadata describing the samples used in 18S ribosomal DNA sequencing of gut contents from zooplankton collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Raw sequence data along with these files are deposited in the Sequence Read Archive (SRA), and will be accessible through National Center for Biotechnology Information (NCBI), BioProject Identification (ID) PRJNA789896 upon manuscript publication (expected December 2022). The study looks at the Eukaryotic organisms in the guts of Arctic zooplankton collected through the year-long drift survey. The majority of the samples used were female copepods (Calanus glacialis, Calanus hyperboreus, and Metridia longa), with a few other organisms and life stages included.  more » « less
Award ID(s):
1824414
PAR ID:
10563098
Author(s) / Creator(s):
;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
copepods grazing dynamics zooplankton
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition was conducted from October 2019-September 2020. During this ~1 year period, the Research Vessel (R/V) Polarstern was frozen into the ice in the Central Arctic Ocean north of Norway and drifted with the prevailing currents from north to south, traversing multiple Arctic basins and regimes, and was re-located in late July to near the North Pole after drifting through Fram Strait. The ship served as a floating laboratory for an international, multidisciplinary program focusing on multiple facets of ice, ocean, atmosphere, biogeochemistry, and ecosystem responses to ongoing changing environmental conditions. Zooplankton ecology was investigated as part of the ecosystem team program. Here we present data on key zooplankton morphological and compositional parameters collected over the period of the drift. This data set contains the carbon and nitrogen content (micrograms [µg]) and lengths for individuals or groups of calanoid copepods and other taxa (e.g., amphipods, chaetognaths), width (micrometers [µm]) for copepods, and body area (micrometers squared [µm2]) and lipid sac area (µm2) for Calanus spp. copepods collected in different water depth intervals at approximately weekly intervals during the period of the drift. 
    more » « less
  2. Abstract The changing Arctic environment is affecting zooplankton that support its abundant wildlife. We examined how these changes are influencing a key zooplankton species, Calanus finmarchicus , principally found in the North Atlantic but expatriated to the Arctic. Close to the ice-edge in the Fram Strait, we identified areas that, since the 1980s, are increasingly favourable to C. finmarchicus . Field-sampling revealed part of the population there to be capable of amassing enough reserves to overwinter. Early developmental stages were also present in early summer, suggesting successful local recruitment. This extension to suitable C. finmarchicus habitat is most likely facilitated by the long-term retreat of the ice-edge, allowing phytoplankton to bloom earlier and for longer and through higher temperatures increasing copepod developmental rates. The increased capacity for this species to complete its life-cycle and prosper in the Fram Strait can change community structure, with large consequences to regional food-webs. 
    more » « less
  3. Chaetognatha are highly-effective predatory components of the marine planktonic assemblages. Many species exhibit disjunct biogeographical distributions throughout the global ocean, and thus serve as sentinel species for examining climate-driven changes in ocean circulation on zooplankton species, communities, and food webs. Of particular interest are ecological changes in the Arctic, a region being drastically affected by climate change. In this study, a 650 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was sequenced for 131 individuals for the chaetognath Eukrohnia hamata collected from diverse regions throughout the Arctic. DNA sequence analysis was done to characterize population genetic diversity and structure, phylogeography (i.e., geographic distribution of genetic lineages within species), and connectivity among regional populations. High haplotype diversity (Hd) and significant (p <0.02) negative values for Fu’s and Li’s F statistic imply that E. hamata is undergoing population expansion.. Patterns and pathways of population connectivity examined to test several migration hypotheses revealed that pan-Arctic population connectivity followed the primary ocean currents. The reliance of this ecologically important zooplankton species on Arctic Ocean currents has implications for future warming conditions, which have the potential to modify these currents, resulting in altered biogeographical distributions and population connectivity of Arctic zooplankton. 
    more » « less
  4. Chaetognatha are highly-effective predatory components of the marine planktonic assemblages. Many species exhibit disjunct biogeographical distributions throughout the global ocean, and thus serve as sentinel species for examining climate-driven changes in ocean circulation on zooplankton species, communities, and food webs. Of particular interest are ecological changes in the Arctic, a region being drastically affected by climate change. In this study, a 650 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was sequenced for 131 individuals for the chaetognath Eukrohnia hamata collected from diverse regions throughout the Arctic. DNA sequence analysis was done to characterize population genetic diversity and structure, phylogeography (i.e., geographic distribution of genetic lineages within species), and connectivity among regional populations. High haplotype diversity (Hd) and significant (p <0.02) negative values for Fu’s and Li’s F statistic imply that E. hamata is undergoing population expansion.. Patterns and pathways of population connectivity examined to test several migration hypotheses revealed that pan-Arctic population connectivity followed the primary ocean currents. The reliance of this ecologically important zooplankton species on Arctic Ocean currents has implications for future warming conditions, which have the potential to modify these currents, resulting in altered biogeographical distributions and population connectivity of Arctic zooplankton. 
    more » « less
  5. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition was conducted from October 2019-September 2020. During this ~1 year period, the Research Vessel (R/V) Polarstern was frozen into the ice in the Central Arctic Ocean north of Norway and drifted with the prevailing currents from north to south, traversing multiple Arctic basins and regimes, and was re-located in late July to near the North Pole after drifting through Fram Strait. The ship served as a floating laboratory for an international, multidisciplinary program focusing on multiple facets of ice, ocean, atmosphere, biogeochemistry, and ecosystem responses to ongoing changing environmental conditions. Zooplankton ecology was investigated as part of the ecosystem team program. Here we present data on key zooplankton rate processes collected over the period of the drift including: respiration, feeding, and reproduction. 
    more » « less