Carbon capture and utilization technology is the research stream dedicated to mitigating the pressing effect of rising atmospheric carbon dioxide (CO2). The present study investigates a potential environmentally conscious solvent to capture and utilize CO2 using waste concrete and seawater under reactor conditions. Although seawater’s CO2 soubility is low due to salinity, waste concrete raises seawater’s pH and alkalinity, acting as a feedstock for CO2 dissolution and offsetting the adverse effects of salinity. To evaluate the performance of the novel natural seawater-concrete solutions for CO2 capture, time-dependent pH changes of solutions exposed to CO2 were measured in a microchannel using fluorescence microscopy. The concentration of dissolved CO2 in the solution was derived from pH change, revealing a 4-fold increase in the total dissolved carbon from 0.034 to 0.13 M and a 57.54% increase in the CO2 dissolution coefficient from 530 to 835 μm2/s in seawater upon concrete addition. Electrolysis further enhanced the CO2 capture capacity of the seawater-concrete solution by increasing the pH, enabling the solid precipitation of carbonate minerals. Raman spectroscopy and scanning electron microscopy showed that electrolysis-driven precipitates are mainly amorphous calcium carbonates, useful building blocks for seashells and coral reefs.
more »
« less
Behavior of Colloidal Nanosilica in an Ultrahigh Performance Concrete Environment Using Dynamic Light Scattering
The dispersion quality of nanosilica (NS) is an essential parameter to influence and control the material characteristics of nanosilica-enhanced concrete. In this research, the dispersion quality of colloidal nanosilica in simulated concrete environments was investigated using dynamic light scattering. A concrete environment was simulated by creating a synthetic pore solution that mimicked the ionic concentration and pH value of ultrahigh-performance concrete in the fluid state. Four colloidal nanosilica samples were used, ranging in particle sizes from 5 to 75 nm, with differing solid contents and stabilizing ions. It was found that the sodium stabilized 20 nm NS sol remains dispersed at a solid concentration of 2 wt % through a variety of pH values with the inclusion of potassium ions. Calcium ions are a major contributor to the agglomeration of NS sols and only small concentrations of calcium ions can drastically affect the dispersion quality.
more »
« less
- Award ID(s):
- 1454574
- PAR ID:
- 10563224
- Publisher / Repository:
- Not Applicable
- Date Published:
- Journal Name:
- Materials
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 1976
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We recently applied carbonic anhydrase (CA) for the rapid catalytic conversion of carbon dioxide to enable the self-healing properties of concrete and in the development of a carbon-negative concrete replacement named Enzymatic Construction Material (ECM). Here, we explore the stability and carbonate generation ability of model molecular mimics of carbonic anhydrase under high pH and elevated temperatures relevant to long-term durability in cementitious and concrete-like materials. Molecular mimics include Zn2+-based organometallic complexes with an aromatic ligand tris(2-pyridylmethyl)amine, TPA, and with an aliphatic ligand cyclen, 1,4,7,10-tetraazacyclododecane. The Zn(TPA) and Zn(cyclen) complexes are stable in aqueous environments at standard pressures ranging from neutral to pH 13 and temperatures up to 120 °C, where CA is inactive. Under the temperature and pH conditions studied, organometallic degradation pathways do not involve the decomposition of either organic ligand but rather the dissociation of the complex that is reversible upon neutralization in the case of Zn(TPA). Zn(cyclen) is stable at high temperatures at pH 12 and above, resembling cementitious conditions for over 365 days with no signs of degradation. Separately, alkaline calcium-containing solutions with either 25 nM CA or 5 mM Zn(cyclen) catalyst demonstrated accelerated pH decreases compared to catalyst-free controls upon sparging with carbon dioxide because of the conversion of CO2 and H2O to HCO3– and H+. Notably, the inclusion of sub-molar concentrations of detergents, such as sodium dodecyl sulfate, in carbonate production reactions demonstrated no change in the reactivity of control solutions or those with the Zn(cyclen) catalyst but severely attenuated the conversion in CA-containing solutions concomitant with CA denaturation and loss of enzymatic activity.more » « less
-
Lead( iv ) oxide PbO 2 is one dominant solid phase in lead corrosion scales of drinking water distribution systems. Understanding the colloidal dispersion of PbO 2 is important for lead control in drinking water, especially under scenarios of switching the residual disinfectant from chlorine to chloramine. This study investigated the changes in lead release and colloidal dispersion from PbO 2(s) associated with the presence of natural organic matter (NOM), the introduction of chloramine, and the addition of a phosphate corrosion inhibitor in drinking water distribution systems. Experimental data showed that when NOM was present, the surface charges of PbO 2 exhibited a prominent negative shift, leading to colloidal dispersion of Pb( iv ) particles. The presence of chloramine did not significantly change the detrimental effects of NOM on the colloidal behavior of PbO 2 . In contrast, the addition of phosphate greatly reduced colloidal lead release in the size range between 0.1 and 0.45 μm, and limited lead release with colloidal sizes less than 0.1 μm to below 15 μg L −1 , i.e. , the U.S. EPA regulatory standard. The beneficial effects of phosphate addition are mainly attributed to the suppression in colloidal dispersion of Pb( iv ) particles. Meanwhile, the presence of phosphate also limits the reductive dissolution of PbO 2 via the formation of hydroxypyromorphite Pb 5 (PO 4 ) 3 OH particles. Results from this study suggest that phosphate limits the dispersion of PbO 2(s) by NOM and prevented the release of Pb( iv ) colloids into drinking water.more » « less
-
Exposure to lead, a toxic heavy metal, in drinking water is a worldwide problem. Lead leaching from lead service lines, the main contamination source, and other plumbing materials is controlled by the plumbosolvency of water. Square wave anodic stripping voltammetry (SWASV) has been greatly explored as a rapid and portable technique for the detection of trace Pb 2+ ions in drinking water. However, the impact of water quality parameters (WQP) on the SWASV technique is not well understood. Herein, SWASV was employed to detect 10 μg L −1 Pb 2+ and determine trends in the stripping peak changes in simulated water samples while individually varying the pH, conductivity, alkalinity, free chlorine, temperature, and copper levels. The pH and conductivity were controlled using the buffer 3-( N -morpholino)propanesulfonic acid (MOPS), and NaNO 3 , respectively and kept at pH = 7.0 and conductivity = 500 μS cm −1 when exploring other WQPs. The working electrode, a gold-nanoparticle-modified carbon nanotube fiber cross-section (AuNP-CNT f -CS) electrode provided sufficiently sharp and prominent peaks for 10 μg L −1 Pb 2+ detection as well as good reproducibility, with a relative error of 5.9% in simulated water. We found that conductivity, and temperature had a proportional relationship to the peak height, and pH, alkalinity, free chlorine, and copper had an inverse relationship. In addition, increasing the copper concentration caused broadening and shifting of the Pb 2+ stripping peak. At extremely low conductivities (<100 μS cm −1 ), the voltammograms became difficult to interpret owing to the formation of inverted and distorted peaks. These trends were then also observed within a local drinking water sample in order to validate the results.more » « less
-
Many natural water sources and industrial wastewaters contain low concentrations of metals and other contaminants. Therefore, an efficient and economical method for low-level contaminant removal and recovery is needed. The purpose of the research is to improve and modify a newly developed continuous flow ion exchange process for expansion to a variety of non-industrial applications, including removal of metal ions from the Upper Clark Fork River Watershed. The process involves a dual column reactor designed to capture metal ions using 90–105 μm spherical, functionalized silica gel coated magnetite particles, targeting copper ions with future expansion to additional metals, such as manganese and zinc. The optimization of nanoparticle synthesis and dispersion is ongoing with variables that include pH, metal ion concentration, nanoparticle concentration, and temperature. Additional focus involves maximizing contaminant capture, with current values of 0.19 mmol Cu/g Fe3O4 for magnetite and 0.25 mmol Cu/g Fe3O4 for silica-coated magnetite.more » « less
An official website of the United States government

