SUMMARY A robust, in situ estimate of shear-wave velocity VS and the small-strain damping ratio DS (or equivalently, the quality factor QS) is crucial for the design of buildings and geotechnical systems subjected to vibrations or earthquake ground shaking. A promising technique for simultaneously obtaining both VS and DS relies on the Multichannel Analysis of Surface Waves (MASW) method. MASW can be used to extract the Rayleigh wave phase velocity and phase attenuation data from active-source seismic traces recorded along linear arrays. Then, these data can be inverted to obtain VS and DS profiles. This paper introduces two novel methodologies for extracting the phase velocity and attenuation data. These new approaches are based on an extension of the beamforming technique which can be combined with a modal filter to isolate different Rayleigh propagation modes. Thus, the techniques return reliable phase velocity and attenuation estimates even in the presence of a multimode wavefield, which is typical of complex stratigraphic conditions. The reliability and effectiveness of the proposed approaches are assessed on a suite of synthetic wavefields and on experimental data collected at the Garner Valley Downhole Array and Mirandola sites. The results reveal that, under proper modelling of wavefield conditions, accurate estimates of Rayleigh wave phase velocity and attenuation can be extracted from active-source MASW wavefields over a broad frequency range. Eventually, the estimation of soil mechanical parameters also requires a robust inversion procedure to map the experimental Rayleigh wave parameters into soil models describing VS and DS with depth. The simultaneous inversion of phase velocity and attenuation data is discussed in detail in the companion paper.
more »
« less
Emerging technologies and advanced analyses for non-invasive near-surface site characterization
The in-situ small-strain shear modulus of soil and rock materials is a parameter of paramount importance in geotechnical modeling. It can be derived from non-invasive geophysical surveys, which provide the possibility of testing the subsurface in its natural and undisturbed condition by inferring the velocity of propagation of shear waves. In addition, for soil dynamics and earthquake engineering applications, the small-strain damping ratio plays a relevant role, yet its estimation is still challenging, lacking consolidated approaches for its in-situ evaluation. Recent advancements in instrumentation, such as distributed acoustic sensing (DAS), combined with advanced analysis methodologies for the interpretation of seismic wave propagation (e.g., machine learning and full waveform inversion), open new frontiers in site characterization. This paper presents and compares some advanced applications of measuring 1D and 2D variations in shear wave velocity and attenuation in-situ with reference to a specific case history.
more »
« less
- Award ID(s):
- 2037900
- PAR ID:
- 10563654
- Publisher / Repository:
- ABMS
- Date Published:
- Journal Name:
- Soils and Rocks
- Volume:
- 47
- Issue:
- 3
- ISSN:
- 1980-9743
- Page Range / eLocation ID:
- e2024006923
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY This paper deals with in situ characterization of the small-strain shear-wave velocity VS and damping ratio DS from an advanced interpretation of Multi-channel Analysis of Surface Waves (MASW) surveys. A new approach based on extracting Rayleigh wave data using the CFDBFa method has been discussed in the companion paper. This paper focuses on mapping the experimental Rayleigh wave phase velocity and attenuation into profiles of VS and DS versus depth, which is achieved through a joint inversion procedure. The joint inversion of phase velocity and attenuation data utilizes a newly developed Monte Carlo global search algorithm, which implements a smart sampling procedure. This scheme exploits the scaling properties of the solution of the Rayleigh eigenvalue problem to modify the trial earth models and improve the matching with the experimental data. Thus, a reliable result can be achieved with a limited number of trial ground models. The proposed algorithm is applied to the inversion of synthetic data and of experimental data collected at the Garner Valley Downhole Array site, as described in the companion paper. In general, inverted soil models exhibit well-defined VS profiles, whereas DS profiles are affected by larger uncertainties. Greater uncertainty in the inverted DS profiles is a direct result of higher variability in the experimental attenuation data, the limited wavelength range at which reliable values of attenuation parameters can be retrieved, and the sensitivity of attenuation data to both DS and VS. Nonetheless, the resulting inverted earth models agree well with alternative in situ estimates and geological data. The results stress the feasibility of retrieving both stiffness and attenuation parameters from active-source MASW testing and the effectiveness of extracting in situ damping ratio estimates from surface wave data.more » « less
-
Understanding the dynamics of shear band propagation in metallic glasses remains elusive due to the limited temporal and spatial scales accessible in experiments. In micron-scale molecular dynamics simulations on two model metallic glasses, we studied the propagation of a dominant shear band under uniaxial tension with a macroscopic strain of 3-5%. For both materials, the shear band can be intersonic with a propagation speed exceeding their respective shear wave speeds. The propagation exhibits intrinsic instability that manifests itself as microbranching and considerable fluctuations in velocity. The shear strain singularity ahead of propagating shear band tip scales as 1/r (r is the distance away from the tip), independent of the macroscopic tensile strain. In addition, we studied the intersection of two shear bands under uniaxial tension, during which path deflection, speed slowing-down, and temperature rise at the junction region were observed. The dynamics of propagating shear band shown here indicate that shear band in metallic glasses can be viewed as shear crack under the framework of weakly nonlinear fracture mechanics theory.more » « less
-
ABSTRACT This study investigates linkages between volume change, pore fluid drainage, shear wave velocity, and temperature of soft clays using a thermal triaxial cell equipped with bender elements, a measurement approach that has not been explored widely in past thermo-mechanical studies. Two kaolinite specimens were consolidated mechanically to a normally consolidated state and then subjected to drained and undrained heating-cooling cycles, respectively. After cooling, the specimens were subjected to further mechanical consolidation to evaluate changes in apparent preconsolidation stress. Both specimens showed net contractive thermal strains after a heating-cooling cycle and overconsolidated behavior during mechanical compression immediately after cooling. The shear wave velocity increased during drained heating, but negligible changes were observed during drained cooling, indicating permanent hardening because of thermal consolidation during the heating-cooling cycle. The shear wave velocity decreased during undrained heating because of a reduction in effective stress associated with thermal pressurization of the pore fluid but subsequently increased when drainage was permitted at elevated temperature. The shear wave velocity increased slightly during undrained cooling but decreased when drainage was permitted at room temperature. Net increases in small-strain shear modulus of 17 and 11 % after heating-cooling cycles under drained and undrained (with drainage after reaching stable temperatures) conditions, respectively, provide further evidence to the potential of thermal soil improvement of normally consolidated clays. Transient changes in shear modulus also highlight the importance of considering drainage conditions and corresponding changes in effective stress state during heating-cooling cycles.more » « less
-
Abstract The last few decades have seen great achievements in dynamic fracture mechanics. Yet, it was not possible to experimentally quantify the full-field behavior of dynamic fractures, until very recently. Here, we review our recent work on the full-field quantification of the temporal evolution of dynamic shear ruptures. Our newly developed approach based on digital image correlation combined with ultrahigh-speed photography has revolutionized the capabilities of measuring highly transient phenomena and enabled addressing key questions of rupture dynamics. Recent milestones include the visualization of the complete displacement, particle velocity, strain, stress and strain rate fields near growing ruptures, capturing the evolution of dynamic friction during individual rupture growth, and the detailed study of rupture speed limits. For example, dynamic friction has been the biggest unknown controlling how frictional ruptures develop but it has been impossible, until now, to measure dynamic friction during spontaneous rupture propagation and to understand its dependence on other quantities. Our recent measurements allow, by simultaneously tracking tractions and sliding speeds on the rupturing interface, to disentangle its complex dependence on the slip, slip velocity, and on their history. In another application, we have uncovered new phenomena that could not be detected with previous methods, such as the formation of pressure shock fronts associated with “supersonic” propagation of shear ruptures in viscoelastic materials where the wave speeds are shown to depend strongly on the strain rate.more » « less
An official website of the United States government

