skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deciphering metabolic differentiation during Bacillus subtilis sporulation
Abstract The bacteriumBacillus subtilisundergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments. Our results indicate that nucleotides are synthesized in the mother cell and transported in the form of nucleoside di- or tri-phosphates to the forespore via the Q-A channel. However, if the Q-A channel is inactivated later in sporulation, then glycolytic enzymes can form an ATP and NADH shuttle, providing the forespore with energy and reducing power. Our integrated in silico and in vivo approach sheds light into the intricate metabolic interactions underlying cell differentiation inB. subtilis, and provides a foundation for future studies of metabolic differentiation.  more » « less
Award ID(s):
2325172
PAR ID:
10564429
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bacteria require membrane fission for both cell division and endospore formation. In Bacillus subtilis, sporulation initiates with an asymmetric division that generates a large mother cell and a smaller forespore that contains only a quarter of its genome. As the mother cell membranes engulf the forespore, a DNA translocase pumps the rest of the chromosome into the small forespore compartment, inflating it due to increased turgor. When the engulfing membrane undergoes fission, the forespore is released into the mother cell cytoplasm. The B. subtilis protein FisB catalyzes membrane fission during sporulation, but the molecular basis is unclear. Here, we show that forespore inflation and FisB accumulation are both required for an efficient membrane fission. Forespore inflation leads to higher membrane tension in the engulfment membrane than in the mother cell membrane, causing the membrane to flow through the … 
    more » « less
  2. null (Ed.)
    The Gram-positive bacterium Bacillus subtilis can divide via two modes. During vegetative growth, the division septum is formed at the midcell to produce two equal daughter cells. However, during sporulation, the division septum is formed closer to one pole to yield a smaller forespore and a larger mother cell. Using cryo-electron tomography, genetics and fluorescence microscopy, we found that the organization of the division machinery is different in the two septa. While FtsAZ filaments, the major orchestrators of bacterial cell division, are present uniformly around the leading edge of the invaginating vegetative septa, they are only present on the mother cell side of the invaginating sporulation septa. We provide evidence suggesting that the different distribution and number of FtsAZ filaments impact septal thickness, causing vegetative septa to be thicker than sporulation septa already during constriction. Finally, we show that a sporulation-specific protein, SpoIIE, regulates asymmetric divisome localization and septal thickness during sporulation. 
    more » « less
  3. Kovács, Ákos T. (Ed.)
    ABSTRACT In Bacillus subtilis , master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems. 
    more » « less
  4. I. ABSTRACT Bacteriophage (phage) infect, lyse, and propagate within bacterial populations. However, physiological changes in bacterial cell state can protect against infection even within genetically susceptible populations. One such example is the generation of endospores byBacillusand its relatives, characterized by a reversible state of reduced metabolic activity that protects cells against stressors including desiccation, energy limitation, antibiotics, and infection by phage. Here we tested how sporulation at the cellular scale impacts phage dynamics at population scales when propagating amongstB. subtilisin spatially structured environments. Initially, we found that plaques resulting from infection and lysis were approximately 3-fold smaller on lawns of sporulating wild-type bacteria vs. non-sporulating bacteria. Notably, plaque size was reduced due to an early termination of expanding phage plaques rather than the reduction of plaque growth speed. Microscopic imaging of the plaques revealed ‘sporulation rings’, i.e., spores enriched around plaque edges relative to phage-free regions. We developed a series of mathematical models of phage, bacteria, spore, and small molecules that recapitulate plaque dynamics and identify a putative mechanism: sporulation rings arise in response to lytic activity. In aggregate, sporulation rings inhibit phage from accessing susceptible cells even when sufficient resources are available for further infection and lysis. Together, our findings identify how dormancy can self-limit phage infections at population scales, opening new avenues to explore the entangled fates of phages and their bacterial hosts in environmental and therapeutic contexts. 
    more » « less
  5. Svensson, Sarah L (Ed.)
    ABSTRACT In starvingBacillus subtilisbacteria,the initiation of two survival programs—biofilm formation and sporulation—is controlled by the same phosphorylated master regulator, Spo0A~P. Its gene,spo0A,is transcribed from two promoters, Pvand Ps,that are, respectively, regulated by RNA polymerase (RNAP) holoenzymes bearing σAand σH. Notably, transcription is directly autoregulated by Spo0A~P binding sites known as 0A1, 0A2, and 0A3 box, located in between the two promoters. It remains unclear whether, at the onset of starvation, these boxes activate or repressspo0Aexpression, and whether the Spo0A~P transcriptional feedback plays a role in the increase inspo0Aexpression. Based on the experimental data of the promoter activities under systematic perturbation of the promoter architecture, we developed a biophysical model of transcriptional regulation ofspo0Aby Spo0A~P binding to each of the 0A boxes. The model predicts that Spo0A~P binding to its boxes does not affect the RNAP recruitment to the promoters but instead affects the transcriptional initiation rate. Moreover, the effects of Spo0A~P binding to 0A boxes are mainly repressive and saturated early at the onset of starvation. Therefore, the increase inspo0Aexpression is mainly driven by the increase in RNAP holoenzyme levels. Additionally, we reveal that Spo0A~P affinity to 0A boxes is strongest at 0A3 and weakest at 0A2 and that there are attractive forces between the occupied 0A boxes. Our findings, in addition to clarifying how the sporulation master regulator is controlled, offer a framework to predict regulatory outcomes of complex gene-regulatory mechanisms. IMPORTANCECell differentiation is often critical for survival. In bacteria, differentiation decisions are controlled by transcriptional master regulators under transcriptional feedback control. Therefore, understanding how master regulators are transcriptionally regulated is required to understand differentiation. However, in many cases, the underlying regulation is complex, with multiple transcription factor binding sites and multiple promoters, making it challenging to dissect the exact mechanisms. Here, we address this problem for theBacillus subtilismaster regulator Spo0A. Using a biophysical model, we quantitatively characterize the effect of individual transcription factor binding sites on eachspo0Apromoter. Furthermore, the model allows us to identify the specific transcription step that is affected by transcription factor binding. Such a model is promising for the quantitative study of a wide range of master regulators involved in transcriptional feedback. 
    more » « less