skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-wavelength observations and modeling of a microflare: constraining non-thermal particle acceleration
In this work we analyze a small B-class flare that occurred on 29 April 2021 and was observed simultaneously by the Interface Region Imaging Spectrograph (IRIS) and the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray instrument. The IRIS observations of the ribbon of the flare show peculiar spectral characteristics that are typical signatures of energy deposition by non-thermal electrons in the lower atmosphere. The presence of the non-thermal particles is also confirmed directly by fitting the NuSTAR spectral observations. We show that, by combining IRIS and NuSTAR multi-wavelength observations from the corona to the lower atmosphere with hydrodynamic simulations using the RADYN code, we can provide strict constraints on electron-beam heated flare models. This work presents the first NuSTAR, IRIS and RADYN joint analysis of a non-thermal microflare, and presents a self-consistent picture of the flare-accelerated electrons in the corona and the chromospheric response to those electrons.  more » « less
Award ID(s):
1752268
PAR ID:
10564670
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solar flares, driven by prompt release of free magnetic energy in the solar corona 1,2 , are known to accelerate a substantial portion (ten per cent or more) 3,4 of available electrons to high energies. Hard X-rays, produced by high-energy electrons accelerated in the flare 5 , require a high ambient density for their detection. This restricts the observed volume to denser regions that do not necessarily sample the entire volume of accelerated electrons 6 . Here we report evolving spatially resolved distributions of thermal and non-thermal electrons in a solar flare derived from microwave observations that show the true extent of the acceleration region. These distributions show a volume filled with only (or almost only) non-thermal electrons while being depleted of the thermal plasma, implying that all electrons have experienced a prominent acceleration there. This volume is isolated from a surrounding, more typical flare plasma of mainly thermal particles with a smaller proportion of non-thermal electrons. This highly efficient acceleration happens in the same volume in which the free magnetic energy is being released 2 . 
    more » « less
  2. Magnetic reconnection is the key mechanism for energy release in solar eruptions, where the high-temperature emission is the primary diagnostic for investigating the plasma properties during the reconnection process. Non-thermal broadening of high-temperature lines has been observed in both the reconnection current sheet (CS) and flare loop-top regions by UV spectrometers, but its origin remains unclear. In this work, we use a recently developed three-dimensional magnetohydrodynamic (MHD) simulation to model magnetic reconnection in the standard solar flare geometry and reveal highly dynamic plasma flows in the reconnection regions. We calculate the synthetic profiles of the Fe XXI 1354 Å line observed by the Interface Region Imaging Spectrograph (IRIS) spacecraft by using parameters of the MHD model, including plasma density, temperature, and velocity. Our model shows that the turbulent bulk plasma flows in the CS and flare loop-top regions are responsible for the non-thermal broadening of the Fe XXI emission line. The modeled non-thermal velocity ranges from tens of km s −1 to more than two hundred km s −1 , which is consistent with the IRIS observations. Simulated 2D spectral line maps around the reconnection region also reveal highly dynamic downwflow structures where the high non-thermal velocity is large, which is consistent with the observations as well. 
    more » « less
  3. ABSTRACT Microflares are energetically smaller versions of solar flares, demonstrating the same processes of plasma heating and particle acceleration. However, it remains unclear down to what energy scales this impulsive energy release continues, which has implications for how the solar atmosphere is heated. The heating and particle acceleration in microflares can be studied through their X-ray emission, finding predominantly thermal emission at lower energies; however, at higher energies it can be difficult to distinguish whether the emission is due to hotter plasma and/or accelerated electrons. We present the first application of nested sampling to solar flare X-ray spectra, an approach that provides a quantitative degree of confidence for one model over another. We analyse Nuclear Spectroscopic Telescope Array X-ray observations of a small active region microflare (A0.02 GOES/XRS class equivalent) that occurred on 2021 November 17, with a new python package for spectral fitting, sunkit-spex, to compute the parameter posterior distributions and the evidence of different models representing the higher energy emission as due to thermal or non-thermal sources. Calculating the Bayes factor, we show that there is significantly stronger evidence for the higher energy microflare emission to be produced by non-thermal emission from flare-accelerated electrons than by an additional hot thermal source. Qualitative confirmation of this non-thermal source is provided by the lack of hotter (10 MK) emission in Solar Dynamic Observatory’s Atmospheric Imaging Assembly’s extreme ultraviolet data. The nested sampling approach used in this paper has provided clear support for non-thermal emission at the level of 3 × 1024 erg s−1 in this tiny microflare. 
    more » « less
  4. Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations. 
    more » « less
  5. null (Ed.)
    Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p -modes, are suggestive of coupling between the photosphere and the corona. Aims. Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no large flares. Methods. We used coordinated observations of Type III radio bursts from the FIELDS instrument on Parker Solar Probe (PSP), of EUV emissions by the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and white light observations by SDO Helioseismic and Magnetic Image (HMI), and of solar flare X-rays by Nuclear Spectroscopic Telescope Array (NuSTAR) on April 12, 2019. Several methods for assessing periodicities are utilized and compared to validate periods obtained. Results. Periodicities of ~5 min in the EUV in several areas of an active region are well correlated with the repetition rate of the Type III radio bursts observed on both PSP and Wind. Detrended 211 and 171 Å light curves show periodic profiles in multiple locations, with 171 Å peaks sometimes lagging those seen in 211 Å. This is suggestive of impulsive events that result in heating and then cooling in the lower corona. NuSTAR X-rays provide evidence for at least one microflare during the interval of Type III bursts, but there is not a one-to-one correspondence between the X-rays and the Type III bursts. Our study provides evidence for periodic acceleration of nonthermal electrons (required to generate Type III radio bursts) when there were no observable flares either in the X-ray data or the EUV. The acceleration process, therefore, must be associated with small impulsive events, perhaps nanoflares. 
    more » « less