The East Anatolian fault in Turkey exhibits along-strike rupture segmentation, typically resulting in earthquakes with moment magnitude (Mw) up to 7.5 that are confined to individual segments. However, on 6 February 2023, a catastrophic Mw 7.8 earthquake struck near Kahramanmaraş (southeastern Turkey), defying previous expectations by rupturing multiple segments spanning over 300 km and overcoming multiple geometric complexities. We explore the mechanics of successive single- and multi-segment ruptures using numerical models of the seismic cycle calibrated to historical earthquake records and geodetic observations of the 2023 doublet. Our model successfully reproduces the observed historical rupture segmentation and the rare occurrence of multi-segment earthquakes. The segmentation pattern is influenced by variations in long-term slip rate along strike across the kinematically complex fault network between the Arabian and Anatolian plates. Our physics-based seismic cycle simulations shed light on the long-term variability of earthquake size that shapes seismic hazards.
more »
« less
This content will become publicly available on January 4, 2026
An analysis of directivity pulses using empirical data and dynamic rupture simulations of the 2023 Kahramanmaras earthquake doublet
Near-field earthquake ground motions characterized by strong velocity pulses can cause extensive damage to buildings and structures. Such pulses were identified during the Mw 7.8 and Mw 7.5 earthquake doublet of the 2023 Turkey seismic sequence, potentially contributing to the extensive damage it caused. Therefore, a better understanding and characterization of pulse properties (e.g. period and amplitude) and their underlying physical factors are crucial for earthquake-resistant design. In this study, we characterize the velocity pulses reported in observed records and synthetic waveforms generated by a three-dimensional (3D) dynamic rupture simulation of the Mw 7.8 event. We observed significant variability in the pulse properties of the observed records in near-fault regions, particularly regarding their orientations. This variability was not fully captured by the dynamic rupture simulation. Our results indicate that directivity effects are not the only factors influencing pulse characteristics in this earthquake doublet. While site effects (e.g. basin effects) may influence pulse characteristics at some stations, local heterogeneities in slip amplitude, orientations, and fault geometries can be critical in generating or influencing pulse properties in this earthquake doublet.
more »
« less
- PAR ID:
- 10564785
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Earthquake Spectra
- ISSN:
- 8755-2930
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The 2023 Turkey earthquake sequence involved unexpected ruptures across numerous fault segments. We present 3D dynamic rupture simulations to illuminate the complex dynamics of the earthquake doublet. Our models are constrained by observations available within days of the sequence and deliver timely, mechanically consistent explanations of the unforeseen rupture paths, diverse rupture speeds, multiple slip episodes, heterogeneous fault offsets, locally strong shaking, and fault system interactions. Our simulations link both earthquakes, matching geodetic and seismic observations and reconciling regional seismotectonics, rupture dynamics, and ground motions of a fault system represented by 10 curved dipping segments and embedded in a heterogeneous stress field. The Mw 7.8 earthquake features delayed backward branching from a steeply branching splay fault, not requiring supershear speeds. The asymmetrical dynamics of the distinct, bilateral Mw 7.7 earthquake are explained by heterogeneous fault strength, prestress orientation, fracture energy, and static stress changes from the previous earthquake. Our models explain the northward deviation of its eastern rupture and the minimal slip observed on the Sürgü fault. 3D dynamic rupture scenarios can elucidate unexpected observations shortly after major earthquakes, providing timely insights for data-driven analysis and hazard assessment toward a comprehensive, physically consistent understanding of the mechanics of multifault systems.more » « less
-
Abstract The five Mw≥7.8 continental transform earthquakes since 2000 all nucleated on branch faults. This includes the 2001 Mw 7.8 Kokoxili, 2002 Mw 7.9 Denali, 2008 Mw 7.9 Wenchuan, 2016 Mw 7.8 Kaikōura, and 2023 Mw 7.8 Pazarcık events. A branch or splay is typically an immature fault that connects to the transform at an oblique angle and can have a different rake and dip than the transform. The branch faults ruptured for at least 25 km before they joined the transforms, which then ruptured an additional 250–450 km, in all but one case (Pazarcık) unilaterally. Branch fault nucleation is also likely for the 1939 M 7.8 Erzincan earthquake, possible for the 1906 Mw∼7.8 and 1857 Mw∼7.9 San Andreas earthquakes, but not for the 1990 Mw 7.7 Luzon, 2013 Mw 7.7 Balochistan, and 2023 Mw 7.7 Elbistan events. Here, we argue that because fault continuity and cataclastite within the fault damage zone develop through cumulative fault slip, mature transforms are pathways for dynamic rupture. Once a rupture enters the transform from the branch fault, flash shear heating causes pore fluid pressurization and sudden weakening in the cataclastite, resulting in very low dynamic friction. But the static friction on transforms is high, and so they are usually far from failure, which could be why they tend to be aseismic between, or at least for centuries after, great events. This could explain why the largest continental transform earthquakes either begin on a branch fault or nucleate along the transform at locations where the damage zone is absent or the fault continuity is disrupted by bends or echelons, as in the 1999 Mw 7.6 İzmit earthquake. Recognition of branch fault nucleation could be used to strengthen earthquake early warning in regions such as California, New Zealand, and Türkiye with transform faults.more » « less
-
ABSTRACT Fault zones exhibit geometrical complexity and are often surrounded by multiscale fracture networks within their damage zones, potentially influencing rupture dynamics and near-field ground motions. In this study, we investigate the ground-motion characteristics of cascading ruptures across damage zone fracture networks of moderate-size earthquakes (Mw 5.5–6.0) using high-resolution 3D dynamic rupture simulations. Our models feature a listric normal fault surrounded by more than 800 fractures, emulating a major fault and its associated damage zone. We analyze three cases: a cascading rupture propagating within the fracture network (Mw 5.5), a non-cascading main-fault rupture with off-fault fracture slip (Mw 6.0), and a main-fault rupture without a fracture network (Mw 6.0). Cascading ruptures within the fracture network produce distinct ground-motion signatures with enriched high-frequency content, arising from simultaneous slip of multiple fractures and parts of the main fault, resembling source coda-wave-like signatures. This case shows elevated near-field characteristic frequency (fc) and stress drop, approximately an order of magnitude higher than the estimation directly on the fault of the dynamic rupture simulation. The inferred fc of the modeled vertical ground-motion components reflects the complexity of the radiation pattern and rupture directivity of fracture-network cascading earthquakes. We show that this is consistent with observations of strong azimuthal dependence of corner frequency in the 2009–2016 central Apennines, Italy, earthquake, sequence. Simulated ground motions from fracture-network cascading ruptures also show pronounced azimuthal variations in peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration, with average PGA nearly double that of the non-cascading cases. Cascading ruptures radiate high-frequency seismic energy, yield nontypical ground-motion characteristics including coda-wave-like signatures, and may result in a significantly higher seismologically inferred stress drop and PGA. Such outcomes emphasize the critical role of fault-zone complexity in affecting rupture dynamics and seismic radiation and have important implications for physics-based seismic hazard assessment.more » « less
-
Abstract Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data.more » « less
An official website of the United States government
