Pore wetting is a major constraint to the performance of membrane distillation (MD) for hypersaline brine treatment. Despite the existence of surfactants with diverse properties, an explicit relationship between the properties of surfactants and their capabilities of inducing pore wetting has yet to be established. In this study, we perform a comparative analysis of the wetting behaviors of various surfactants with different charges and molecular weights in MD desalination. The induction time of surfactants to initiate pore wetting was correlated to the apparent contact angle and surface tension of the feedwater. Our results show that different surfactants resulting in similar feedwater surface tensions can lead to drastically different wetting potential, suggesting that both charge of the head group and molecular weight of surfactants have a significant influence on membrane pore wetting. Further, we demonstrate that parameters that have been commonly used to indicate wetting potential, including apparent contact angle and solution surface tension, are not reliable in predicting the wetting behavior of MD membranes, which is intricately linked with surfactant properties such as charge and molecular size. We envision that our results not only improve our fundamental understanding of surfactant-induced wetting but also provide valuable insights that necessitate thorough consideration of surfactant properties in evaluating wetting potential and membrane wetting resistance for MD desalination.
more »
« less
Wetting on silicone surfaces
In this review, we discuss the structural properties of the three most common types of silicone surfaces and their static and dynamic wetting properties. We review experimental and theoretical approaches for soft wetting.
more »
« less
- Award ID(s):
- 2326933
- PAR ID:
- 10564831
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 20
- Issue:
- 27
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 5273 to 5295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During solid surface impact, a falling drop's energy is transformed into oscillations of its liquid/gas interface. We consider drop deposition during oblique impact in the capillary-ballistic regime characterized by high Reynolds number and moderate Weber number. We treat this as an inverse problem showing that post-impact observations of the frequency spectrum and modal partition of energy allow one to determine a drop's pre-impact characteristics and wetting properties. Our analysis is useful for quantifying contact-line dissipation during inertial spreading and can be used as a diagnostic technique for determining substrate wetting properties.more » « less
-
Abstract Omniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination. Our monolithic omniphobic membranes display excellent wetting resistance and water purification performance in MD desalination of hypersaline feedwater containing surfactants. We identify that a trade-off exists between wetting resistance and water vapor permeability of our monolithic MD membranes. Utilizing membranes with tunable wetting resistance and permeability, we elucidate the underlying mechanism of such trade-off. We envision that our fabrication method as well as the mechanistic insight into the wetting resistance-vapor permeability trade-off will pave the way for smart design of MD membranes in diverse water purification applications.more » « less
-
We introduce an accurate and efficient method for characterizing surface wetting and interfacial properties, such as the contact angle made by a liquid droplet on a solid surface, and the vapor–liquid surface tension of a fluid. The method makes use of molecular simulations in conjunction with the indirect umbrella sampling technique to systematically wet the surface and estimate the corresponding free energy. To illustrate the method, we study the wetting of a family of Lennard-Jones surfaces by water. For surfaces with a wide range of attractions for water, we estimate contact angles using our method, and compare them with contact angles obtained using droplet shapes. Notably, our method is able to capture the transition from partial to complete wetting as surface–water attractions are increased. Moreover, the method is straightforward to implement and is computationally efficient, providing accurate contact angle estimates in roughly 5 nanoseconds of simulation time.more » « less
-
null (Ed.)Initiated chemical vapor deposition (iCVD) was used to coat two porous substrates (i.e., hydrophilic cellulose acetate (CA) and hydrophobic polytetrafluoroethylene (PTFE)) with a crosslinked fluoropolymer to improve membrane wetting resistance. The coated CA membrane was superhydrophobic and symmetric. The coated PTFE membrane was hydrophobic and asymmetric, with smaller pore size and lower porosity on the top surface than on the bottom surface. Membrane performance was tested in membrane distillation experiments with (1) a high-salinity feed solution and (2) a surfactant-containing feed solution. In both cases, the coated membranes had higher wetting resistance than the uncoated membranes. Notably, wetting resistances were better predicted by LEP distributions than by minimum LEP values. When LEP distributions were skewed towards high LEP values (i.e., when small pores with high LEP were greater in number), significant (measurable) salt passage did not occur. For the high-salinity feed solution, the coated PTFE membrane had greater wetting resistance than the coated CA membrane; thus, reduced surface pore size/porosity (which may reduce intrapore scaling) was more effective than increased surface hydrophobicity (which may reduce surface nucleation) in preventing scaling-induced wetting. Reduced pore size/porosity was equally as effective as increased hydrophobicity in resisting surfactant-induced wetting. However, reduced porosity can negatively impact water flux; this represents a permeability/wetting resistance tradeoff in membrane distillation – especially for high-salinity applications. Membrane and/or membrane coating properties must be optimized to overcome this permeability/wetting resistance tradeoff and make MD viable for the treatment of challenging streams. Then, increasing hydrophobicity may not be necessary to impart high wetting resistance to porous membranes. These results are important for future membrane design, especially as manufacturers seek to replace perfluorinated materials with environmentally friendly alternatives.more » « less
An official website of the United States government

