Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error.
more »
« less
Exploitation of Symmetrical Non-Convexity for Symbol-Level DFRC Signal Design
Constructive interference exploited by symbol-level (SL) signal processing is a promising solution for addressing the inherent interference problem in dual-functional radar-communication (DFRC) signal designs. This paper considers an SL-DFRC signal design problem which maximizes the radar performance under communication performance constraints. We exploit the symmetrical non-convexity property of the communication-independent radar sensing metric to develop low- complexity yet efficient algorithms. We first propose a radar-to- DFRC (R2DFRC) algorithm that relies on the non-convexity of the radar sensing metric to find a set of radar-only solutions. Based on these solutions, we further exploit the symmetrical property of the radar sensing metric to efficiently design the DFRC signal. Since the radar sensing metric is independent of the communication channel and data symbols, the set of radar-only solutions can be constructed offline, therefore reducing the computational complexity. We then develop an accelerated R2DFRC algorithm that further reduces the complexity. Finally, we demonstrate the superiority of the proposed algorithms compared to existing methods in terms of both radar sensing and communication performance as well as computational complexity.
more »
« less
- Award ID(s):
- 2008724
- PAR ID:
- 10564888
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-7281-9054-9
- Page Range / eLocation ID:
- 299 to 304
- Format(s):
- Medium: X
- Location:
- Denver, CO, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Integrated sensing and communication has emerged as a transformative technology for future wireless communication networks, enabling the simultaneous realization of radar sensing and communication functions by sharing available resources. To fully exploit the available spatial degrees of freedom in monostatic ISAC systems, we propose a dynamic array partitioning architecture that allows the base station to allocate antennas for transmitting dual-functional signals and receiving the corresponding echoes. Based on this architecture, we jointly design the transmit beamforming and array partitioning to minimize the Cram´er-Rao bound (CRB) for target directionof- arrival estimation, while ensuring compliance with signalto- interference-plus-noise ratio requirements for multiuser communication, power budget constraints, and array partitioning limitations. To address the resulting optimization problem, we develop an alternating algorithm leveraging alternating direction method of multipliers and semi-definite relaxation. Simulation results demonstrate that the proposed joint array partitioning and beamforming design significantly improves the CRB and the resulting DOA estimation performance.more » « less
-
Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm.more » « less
-
Reconfigurable intelligent surface (RIS) technology is a promising approach being considered for future wireless communications due to its ability to control signal propagation with low-cost elements. This paper explores the use of an RIS for clutter mitigation and target detection in radar systems. Unlike conventional reflect-only RIS, which can only adjust the phase of the reflected signal, or active RIS, which can also amplify the reflected signal at the cost of significantly higher complexity, noise, and power consumption, we exploit hybrid RIS that can configure both the phase and modulus of the impinging signal by absorbing part of the signal energy. Such RIS can be considered as a compromise solution between conventional reflect-only and active RIS in terms of complexity, power consumption, and degrees of freedoms (DoFs). We consider two clutter suppression scenarios: with and without knowledge of the target range cell. The RIS design is formulated by minimizing the received clutter echo energy when there is no information regarding the potential target range cell. This turns out to be a convex problem and can be efficiently solved. On the other hand, when target range cell information is available, we maximize the received signal-to-noise-plus-interference ratio (SINR). The resulting non-convex optimization problem is solved through fractional programming algorithms. Numerical results are presented to demonstrate the performance of the proposed hybrid RIS in comparison with conventional RIS in clutter suppression for target detection.more » « less
-
This paper explores the use of reconfigurable intelligent surfaces (RIS) in mitigating cross-system interference in spectrum sharing and secure wireless applications. Unlike conventional RIS that can only adjust the phase of the incoming signal and essentially reflect all impinging energy, or active RIS, which also amplify the reflected signal at the cost of significantly higher complexity, noise, and power consumption, an absorptive RIS (ARIS) is considered. An ARIS can in principle modify both the phase and modulus of the impinging signal by absorbing a portion of the signal energy, providing a compromise between its conventional and active counterparts in terms of complexity, power consumption, and degrees of freedom (DoFs). We first use a toy example to illustrate the benefit of ARIS, and then we consider three applications: 1) spectral coexistence of radar and communication systems, where a convex optimization problem is formulated to minimize the Frobenius norm of the channel matrix from the communication base station to the radar receiver; 2) spectrum sharing in device-to-device (D2D) communications, where a max-min scheme that maximizes the worst-case signal-to-interference-plus-noise ratio (SINR) among the D2D links is developed and then solved via fractional programming; 3) physical layer security of a downlink communication system, where the secrecy rate is maximized and the resulting nonconvex problem is solved by a fractional programming algorithm together with a sequential convex relaxation procedure. Numerical results are then presented to show the significant benefit of ARIS in these applications.more » « less
An official website of the United States government

