We propose a joint channel estimation and data detection (JED) algorithm for cell-free massive multi-user (MU) multiple-input multiple-output (MIMO) systems. Our algorithm yields improved reliability and reduced latency while minimizing the pilot overhead of coherent uplink transmission. The proposed JED method builds upon a novel non-convex optimization problem that we solve approximately and efficiently using forward- backward splitting. We use simulation results to demonstrate that our algorithm achieves robust data transmission with more than 3x reduced pilot overhead compared to orthogonal training in a 128 antenna cell-free massive MU-MIMO system in which 128 users transmit data over 128 time slots.
Joint Transmit Waveform and Receive Filter Design for Dual-Functional Radar-Communication Systems
Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm.
- Award ID(s):
- 2008724
- Publication Date:
- NSF-PAR ID:
- 10377368
- Journal Name:
- Proc. International Conference on Communications
- Page Range or eLocation-ID:
- 5116 to 5121
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we study an unmanned-aerial-vehicle (UAV) based full-duplex (FD) multi-user communication network, where a UAV is deployed as a multiple-input–multiple-output (MIMO) FD base station (BS) to serve multiple FD users on the ground. We propose a multi-objective optimization framework which considers two desirable objective functions, namely sum uplink (UL) rate maximization and sum downlink (DL) rate maximization while providing quality-of-service to all the users in the communication network. A novel resource allocation multi-objective-optimization-problem (MOOP) is designed which optimizes the downlink beamformer, the beamwidth angle, and the 3D position of the UAV, and also the UL power of the FD users. The formulated MOOP is a non-convex problem which is generally intractable. To handle the MOOP, a weighted Tchebycheff method is proposed, which converts the problem to the single-objective-optimization-problem (SOOP). Further, an alternative optimization approach is used, where SOOP is converted in to multiple sub-problems and optimization variables are operated alternatively. The numerical results show a trade-off region between sum UL and sum DL rate, and also validate that the considered FD system provides substantial improvement over traditional HD systems.
-
Multi-path components (MPCs) in wireless channels generally occur in clusters, i.e., groups of MPCs that have similar delay/angle characteristics. However, when those clusters are widely separated and have significantly different power, highresolution parameter extraction (HRPE) algorithms based on serial interference cancellation, such as CLEAN, can miss some of the weaker clusters because they concentrate the path search in the strongest cluster. This effect can occur particularly in the presence of calibration error and/or diffuse scattering. To solve this problem, we propose a heuristic modification, Regional CLEAN (R-CLEAN), that employs cluster identification in the Fourier domain and limits the number of MPCs per cluster. We first demonstrate the effect, and the effectiveness of our proposed algorithm, on synthetic channels with calibration error or diffuse scattering. We then demonstrate it with a THz Multiple-Input- Multiple-Output (MIMO) measurement at 145 - 146 GHz. The proposed optimization and algorithm can thus be an essential step towards evaluating channels with multiple clusters.
-
Utilization of multiple-input multiple-output (MIMO) systems as a means of increasing channel capacity has been an area of increasing consideration in radio communications. However, less study has been devoted to MIMO in the high-frequency band. This research is important because high-frequency communication using MIMO allows for international communication at long distances using lower power consumption than many other approaches. The inter-symbol interference caused by the selective fading of multiple received signals and the randomness of the ionospheric conditions means there is a need for a novel solution. The purpose of this research is to introduce two machine learning approaches that can adaptively apply equalization algorithms to address fading and optimize equalization parameters. The novelty of our approach lies in two main factors. The first is that our approach allows for a software-defined radio to switch equalization algorithms depending on conditions during run-time. The second is that we optimize this selected algorithm further by using two machine-learning approaches. The first proposed cognitive engine model, which utilizes a genetic algorithm, demonstrates the validity and advantage of using a cognitive engine to select optimal equalization parameters at the receiver under the problems created by utilizing the high-frequency band. This approach acts as amore »
-
Deaf spaces are unique indoor environments designed to optimize visual communication and Deaf cultural expression. However, much of the technological research geared towards the deaf involve use of video or wearables for American sign language (ASL) translation, with little consideration for Deaf perspective on privacy and usability of the technology. In contrast to video, RF sensors offer the avenue for ambient ASL recognition while also preserving privacy for Deaf signers. Methods: This paper investigates the RF transmit waveform parameters required for effective measurement of ASL signs and their effect on word-level classification accuracy attained with transfer learning and convolutional autoencoders (CAE). A multi-frequency fusion network is proposed to exploit data from all sensors in an RF sensor network and improve the recognition accuracy of fluent ASL signing. Results: For fluent signers, CAEs yield a 20-sign classification accuracy of %76 at 77 GHz and %73 at 24 GHz, while at X-band (10 Ghz) accuracy drops to 67%. For hearing imitation signers, signs are more separable, resulting in a 96% accuracy with CAEs. Further, fluent ASL recognition accuracy is significantly increased with use of the multi-frequency fusion network, which boosts the 20-sign fluent ASL recognition accuracy to 95%, surpassing conventional feature levelmore »