skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical Layer Security using Chaotic Antenna Arrays in Point-to-Point Wireless Communications
Chaotic antenna array (CAA)s are phased antenna arrays in which individual elements are randomized in their array position, shape, and feed line length. These randomizations generate spatially dependent large scale phase errors (with respect to antenna elements of a uniform array) that enables distinct physical layer security solutions not available to other wireless systems. Herein, a preliminary study on one such novel method, developed to combat eavesdropping is presented. In the proposed method, the CAA equipped transmitter intentionally distorts its signals based on its own array factor (AF) which includes the phase errors. This distortion significantly hampers demodulation at an eavesdropper, while a legitimate receiver that is aware of the phase errors can compensate for the added distortion.  more » « less
Award ID(s):
2233774
PAR ID:
10564977
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4494-3
Page Range / eLocation ID:
1 to 4
Subject(s) / Keyword(s):
chaotic antenna array physical layer security eavesdropping phased antenna array physically unclonable function wireless system
Format(s):
Medium: X
Location:
Clearwater, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaotic antenna arrays (CAAs) are phased antenna arrays with randomized antenna elements exhibiting unique and spatially dependent phase errors. CAAs are promising for generating strong RF fingerprints that can be used for device authentication. For the RF fingerprint to remain secure, it is crucial that the phase errors remain unknown to the user of the CAA. This on the other hand inhibits conventional beam steering that relies on a known antenna array structure. Additionally, the user with the CAA cannot employ known physical layer security methods that are based on phased antenna arrays. To alleviate this issue, we propose a novel security method in networks with distributed receivers. The approach combines i) distortion caused by changes in the array pattern with ii) encoding based on the phase difference at distributed locations, which makes the method resistant against eavesdropping. Mitigating the distortion and decoding the signal becomes only possible if the eavesdropper can obtain all signals received at all legitimate receivers. 
    more » « less
  2. Radio frequency (RF) fingerprinting is a hardware-based authentication technique utilizing the distinct distortions in the received signal due to the unique hardware differences in the transmitting device. Existing RF fingerprinting methods only utilize the naturally occurring hardware imperfections during fabrication; hence their authentication accuracy is limited in practical settings even when state-ofthe-art deep learning classifiers are used. In this work, we propose a Chaotic Antenna Array (CAA) system for significantly enhanced RF fingerprints and a deep learning-based device authentication method for CAA. We provide a mathematical model for CAA, explain how it can be cost-effectively manufactured by utilizing mask-free laser-enhanced direct print additive manufacturing (LE-DPAM), and comprehensively analyze the authentication performance of several deep learning classifiers for CAA. Our results show that the enhanced RF signatures of CAA enable highly accurate authentication of hundreds of devices under practical settings. 
    more » « less
  3. The noise performance of a high sensitivity, wide-field astronomical phased array feed receiver can be characterized by measurements using the antenna Y factor method. These measurements are used to determine figures of merit for an active array receiver. Antenna elements for the Advanced L Band Phased Array Camera for Astronomy (ALPACA) were measured using the antenna Y factor method to determine the active array and receiver noise figure, the antenna loss, receiver equivalent noise temperature, and radiation efficiency of the system over its 500[Formula: see text]MHz operating bandwidth. The completed ALPACA instrument will feature a fully cryogenic design with both the low-noise amplifiers and array elements cryogenically cooled. The uncooled performance measurements from the antenna Y factor method are used to extrapolate the elements cryogenic radiation efficiency and antenna loss showing that it is expected that the elements will contribute less than 1 K to the overall system noise temperature. These results validate the antenna Y factor method to measure key antenna parameters such as the antenna radiation efficiency and show that the instruments front-end array and electronics meets expected performance targets. 
    more » « less
  4. Abstract A novel approach to linear array antennas with adaptive inter-element spacing is presented for the first time. The main idea is based upon electronically displacing the phase center location of the antenna elements, which determine their relative coordinates in the array configuration. This is realized by employing dual-mode microstrip patch antennas as a constitutive element, whose phase center location can be displaced from its physical center by simultaneously exciting two modes. The direction and the amount of displacement is controlled by the amplitude and phase of the modes at the element level. This in turn facilitates reconfiguring the inter-element spacing at the array level. For instance, a uniformly-spaced array could be electronically transformed into a non-uniform one without any mechanical means. The proposed idea is demonstrated in two- and three-element linear antenna arrays. The technique has the potential to control the radiation characteristics such as sidelobe levels, position of the nulls, and the beamwidths in small arrays, which are useful for adaptively controlling the array performance in emerging wireless communication systems and radars. 
    more » « less
  5. This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper. 
    more » « less