skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Creating Temporally Correlated High-Resolution Profiles of Load Injection Using Constrained Generative Adversarial Networks
Traditional smart meters, which measure energy usage every 15 minutes or more and report it at least a few hours later, lack the granularity needed for real-time decision-making. To address this practical problem, we introduce a new method using generative adversarial networks (GAN) that enforces temporal consistency on its high-resolution outputs via hard inequality constraints using convex optimization. A unique feature of our GAN model is that it is trained solely on slow timescale aggregated historical energy data obtained from smart meters. The results demonstrate that the model can successfully create minute-by-minute temporally correlated profiles of power usage from 15-minute interval average power consumption information. This innovative approach, emphasizing inter-neuron constraints, offers a promising avenue for improved high-speed state estimation in distribution systems and enhances the applicability of data-driven solutions for monitoring and subsequently controlling such systems.  more » « less
Award ID(s):
2145063
PAR ID:
10565110
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-2103-5
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
El Paso, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In Smart City and Vehicle-to-Everything (V2X) systems, acquiring pedestrians’ accurate locations is crucial to traffic and pedestrian safety. Current systems adopt cameras and wireless sensors to estimate people’s locations via sensor fusion. Standard fusion algorithms, however, become inapplicable when multi-modal data is not associated. For example, pedestrians are out of the camera field of view, or data from the camera modality is missing. To address this challenge and produce more accurate location estimations for pedestrians, we propose a localization solution based on a Generative Adversarial Network (GAN) architecture. During training, it learns the underlying linkage between pedestrians’ camera-phone data correspondences. During inference, it generates refined position estimations based only on pedestrians’ phone data that consists of GPS, IMU, and FTM. Results show that our GAN produces 3D coordinates at 1 to 2 meters localization error across 5 different outdoor scenes. We further show that the proposed model supports self-learning. The generated coordinates can be associated with pedestrians’ bounding box coordinates to obtain additional camera-phone data correspondences. This allows automatic data collection during inference. Results show that after fine-tuning the GAN model on the expanded 
    more » « less
  2. Air leakages pose a major problem in both residential and commercial buildings. They increase the utility bill and result in excessive usage of Heating Ventilation and Air Conditioning (HVAC) systems, which impacts the environment and causes discomfort to residents. Repairing air leakages in a building is an expensive and time intensive task. Even detecting the leakages can require extensive professional testing. In this paper, we propose a method to identify the leaky homes from a set, provided their energy consumption data is accessible from residential smart meters. In the first phase, we employ a Non-Intrusive Load Monitoring (NILM) technique to disaggregate the HVAC data from total power consumption for several homes. We propose a recurrent neural network and a denoising autoencoder based approach to identify the 'ON' and 'OFF' cycles of the HVACs and their overall usages. We categorize the typical HVAC consumption of about 200 homes and any probable insulation and leakage problems using the Air Changes per Hour at 50 Pa (ACH50) metric in the Dataport datasets. We perform our proposed NILM analysis on different granularities of smart meter data such as 1 min, 15 mins, and 1 hour to observe its effect on classifying the leaky homes. Our results show that disaggregation can be used to identify the residential air-conditioning, at 1 min granularity which in turn helps us to identify the leaky potential homes, with an accuracy of 86%. 
    more » « less
  3. Machine Learning (ML) algorithms have shown quite promising applications in smart meter data analytics enabling intelligent energy management systems for the Advanced Metering Infrastructure (AMI). One of the major challenges in developing ML applications for the AMI is to preserve user privacy while allowing active end-users participation. This paper addresses this challenge and proposes Differential Privacy-enabled AMI with Federated Learning (DP-AMI-FL), framework for ML-based applications in the AMI. This framework provides two layers of privacy protection: first, it keeps the raw data of consumers hosting ML applications at edge devices (smart meters) with Federated Learning (FL), and second, it obfuscates the ML models using Differential Privacy (DP) to avoid privacy leakage threats on the models posed by various inference attacks. The framework is evaluated by analyzing its performance on a use case aimed to improve Short-Term Load Forecasting (STLF) for residential consumers having smart meters and home energy management systems. Extensive experiments demonstrate that the framework when used with Long Short-Term Memory (LSTM) recurrent neural network models, achieves high forecasting accuracy while preserving users data privacy. 
    more » « less
  4. Advanced metering infrastructure (AMI)is a critical part of a modern smart grid that performs the bidirectional data flow of sensitive power information such as smart metering data and control commands. The real-time monitoring and control of the grid are ensured through AMI. While smart meter data helps to improve the overall performance of the grid in terms of efficient energy management, it has also made the AMI an attractive target of cyber attackers with a goal of stealing energy. This is performed through the physical or cyber tampering of the meters, as well as by manipulating the network infrastructure to alter collected data. Proper technology is required for the identification of energy fraud. In this paper, we propose a novel technique to detect fraudulent data from smart meters based on the energy consumption patterns of the consumers by utilizing deep learning techniques. We also propose a method for detecting the suspicious relay nodes in the AMI infrastructure that may manipulate the data while forwarding it to the aggregators. We present the performance of our proposed technique, which shows the correctness of the models in identifying the suspicious smart meter data. 
    more » « less
  5. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less