skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 26, 2025

Title: Increasing phosphorus loss despite widespread concentration decline in US rivers
The loss of phosphorous (P) from the land to aquatic systems has polluted waters and threatened food production worldwide. Systematic trend analysis of P, a nonrenewable resource, has been challenging, primarily due to sparse and inconsistent historical data. Here, we leveraged intensive hydrometeorological data and the recent renaissance of deep learning approaches to fill data gaps and reconstruct temporal trends. We trained a multitask long short-term memory model for total P (TP) using data from 430 rivers across the contiguous United States (CONUS). Trend analysis of reconstructed daily records (1980–2019) shows widespread decline in concentrations, with declining, increasing, and insignificantly changing trends in 60%, 28%, and 12% of the rivers, respectively. Concentrations in urban rivers have declined the most despite rising urban population in the past decades; concentrations in agricultural rivers however have mostly increased, suggesting not-as-effective controls of nonpoint sources in agriculture lands compared to point sources in cities. TP loss, calculated as fluxes by multiplying concentration and discharge, however exhibited an overall increasing rate of 6.5% per decade at the CONUS scale over the past 40 y, largely due to increasing river discharge. Results highlight the challenge of reducing TP loss that is complicated by changing river discharge in a warming climate.  more » « less
Award ID(s):
2346471 2012893
PAR ID:
10565193
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
National Academy of Science
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
48
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The water discharge and sediment load have been increasingly altered by climate change and human activities in recent decades. For the Pearl River, however, long-term variations in the sediment regime, especially in the last decade, remain poorly known. Here we updated knowledge of the temporal trends in the sediment regime of the Pearl River at annual, seasonal and monthly time scales from the 1950s to 2020. Results show that the annual sediment load and suspended sediment concentration (SSC) exhibited drastically decreased, regardless of water discharge. Compared with previous studies, we also found that sediment load and SSC reached a conspicuous peak in the 1980s, and showed a significant decline starting in the 2000s and 1990s, respectively. In the last decade, however, water discharge and sediment load showed slightly increasing trends. At the seasonal scale, the wet-season water discharge displays a decreasing trend, while the dry-season water discharge is increasing. At the monthly scale, the flood seasons in the North and East Rivers typically occur one month earlier than that in the West River due to the different precipitation regimes. Precipitation was responsible for the long-term change of discharge, while human activities (e.g. dam construction and land use change) exerted different effects on the variations in sediment load among different periods. Changes in the sediment regime have exerted substantial influences on downstream channel morphology and saltwater intrusion in the Greater Bay Area. Our study proposes a watershed-based solution, and provides scientific guidelines for the sustainable development of the Greater Bay Area. 
    more » « less
  2. Abstract The climate of the Arctic region is changing rapidly, with important implications for permafrost, vegetation communities, and transport of solutes by streams and rivers to the Arctic Ocean. While research on Arctic streams and rivers has accelerated in recent years, long‐term records are relatively rare compared to temperate and tropical regions. We began monitoring the upper Kuparuk River in 1983 as part of a long‐term, low‐level, whole‐season phosphorus enrichment of a 4–6 km experimental reach, which was subsequently incorporated into the Arctic Long‐Term Ecological Research (Arctic LTER) programme. The phosphorus enrichment phase of the Upper Kuparuk River Experiment (UKRE) ran continuously for 34 seasons, fundamentally altering the community structure and function of the Fertilized reach. The objectives of this paper are to (a) update observations of the environmental conditions in the Kuparuk River region as revealed by long‐term, catchment‐level monitoring, (b) compare long‐term trends in biogeochemical characteristics of phosphorus‐enriched and reference reaches of the Kuparuk River, and (c) report results from a new ‘ReFertilization’ experiment. During the UKRE, temperature and discharge did not change significantly, though precipitation increased slightly. However, the UKRE revealed unexpected community state changes attributable to phosphorus enrichment (e.g., appearance of colonizing bryophytes) and long‐term legacy effects of these state changes after cessation of the phosphorus enrichment. The UKRE also revealed important biogeochemical trends (e.g., increased nitrate flux and benthic C:N, decreased DOP flux). The decrease in DOP is particularly notable in that this may be a pan‐Arctic trend related to permafrost thaw and exposure to new sources of iron that reduce phosphorus mobility to streams and rivers. The trends revealed by the UKRE would have been difficult or impossible to identify without long‐term, catchment level research and may have important influences on connections between Arctic headwater catchments and downstream receiving waters, including the Arctic Ocean. 
    more » « less
  3. Abstract. The quantity and quality of river discharge in Arctic regions is influenced by many processes including climate, watershed attributes and, increasingly, hydrological cycle intensification and permafrost thaw. We used a hydrological model to quantify baseline conditions and investigate the changing character of hydrological elements for Arctic watersheds between Utqiagvik (formerly known as Barrow)) and just west of Mackenzie River over the period 1981–2010. A synthesis of measurements and model simulations shows that the region exports 31.9 km3 yr−1 of freshwater via river discharge, with 55.5 % (17.7 km3 yr−1) coming collectively from the Colville, Kuparuk, and Sagavanirktok rivers. The simulations point to significant (p<0.05) increases (134 %–212 % of average) in cold season discharge (CSD) for several large North Slope rivers including the Colville and Kuparuk, and for the region as a whole. A significant increase in the proportion of subsurface runoff to total runoff is noted for the region and for 24 of the 42 study basins, with the change most prevalent across the northern foothills of the Brooks Range. Relatively large increases in simulated active-layer thickness (ALT) suggest a physical connection between warming climate, permafrost degradation, and increasing subsurface flow to streams and rivers. A decline in terrestrial water storage (TWS) is attributed to losses in soil ice that outweigh gains in soil liquid water storage. Over the 30-year period, the timing of peak spring (freshet) discharge shifts earlier by 4.5 d, though the time trend is only marginally (p=0.1) significant. These changing characteristics of Arctic rivers have important implications for water, carbon, and nutrient cycling in coastal environments. 
    more » « less
  4. Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, and (4) applications of specific conductance as a proxy for tracking sources and concentrations of groups of elements in freshwaters. We prioritize FSS research needs related to better understanding: (1) effects of saltwater intrusion on ecosystem processes, (2) potential health risks from groundwater contamination of home wells, (3) potential risks to clean and safe drinking water sources, (4) economic and safety impacts of infrastructure corrosion, (5) alteration of biodiversity and ecosystem functions, and (6) application of high-frequency sensors in state-of-the art monitoring and management. We evaluate management solutions using a watershed approach spanning air, land, and water to explore variations in sources, fate and transport of different salt ions (e.g.monitoring of atmospheric deposition of ions, stormwater management, groundwater remediation, and managing road runoff). We also identify tradeoffs in management approaches such as unanticipated retention and release of chemical cocktails from urban stormwater management best management practices (BMPs) and unintended consequences of alternative deicers on water quality. Overall, we show that FSS has direct and indirect effects on mobilization of diverse chemical cocktails of ions, metals, nutrients, organics, and radionuclides in freshwaters with mounting impacts. Our comprehensive review suggests what could happen if FSS were not managed into the future and evaluates strategies for reducing increasing risks to clean and safe drinking water, human health, costly infrastructure, biodiversity, and critical ecosystem services. 
    more » « less
  5. Abstract Global trends in river nitrogen yields reflect human distortion of the global nitrogen cycle. Climate change and increasing agricultural intensity are projected to enhance river nitrogen yields in temperate watersheds and impair downstream water quality. However, little is known about the environmental drivers of nitrogen yields in major Arctic rivers, which have experienced rapid climatic changes and are important conduits of nutrients and organic matter to the Arctic Ocean. Here we analyze trends in nitrogen yields in the six largest Arctic rivers between 2003 and 2023 and develop generalized additive models to elucidate the watershed characteristics and climatic processes associated with observed spatial and interannual variability. We found significant increases in dissolved organic nitrogen yield and/or declines in dissolved inorganic nitrogen yield in four of the six rivers. While temperature and precipitation, via their relationships to discharge, enhance dissolved nitrogen yields, we attribute the diverging trends to the responses of inorganic and organic nitrogen to temperature via effects on permafrost free extent. Spatially, we attribute differences in nitrogen yields across watersheds to differences in land cover and temperature. Shifts in the amount and composition of river nitrogen yields will impact the balance between primary productivity and heterotrophy in nitrogen limited coastal Arctic Ocean ecosystems. Results from this work highlight the importance of climate‐driven changes in temperature and precipitation on river nitrogen yields in large Arctic rivers and motivate further investigation into how permafrost loss and hydrological shifts interact to drive water quality and biogeochemical cycling in the region. 
    more » « less