skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Synthesis, microstructure and micro-mechanical characterization of metal (Nb, Ti) – MAX phase (Ti2AlC) nanolaminates
We utilize elevated temperature physical vapor deposition (PVD) techniques to design metal/MAX multilayered nanocomposite thin films with alternating nanoscale metallic (Nb, Ti) and MAX phase (Ti2AlC) layer thicknesses. These metal/MAX nanolaminate architectures attempt to exploit a unique hierarchical topology – as interfaces between the layers are expected to be in direct competition with the internal interfaces within the MAX layers, to drive their tunable macroscopic mechanical behavior. Two metal/MAX nanolaminates – Nb/Ti2AlC and Ti/Ti2AlC – were deposited. The Nb/Ti2AlC metal/MAX system showed highly diffused layer interfaces with distinct Ti – rich and Nb-Al – rich layers, with the presence of MAX phase alongside TiC and other Ti-Al and Nb-Al intermetallic phases. The Nb/Ti2AlC system possessed a layered architecture, though the MAX phases were not found to be continuously present in each alternating layer. The second Ti/Ti2AlC system showed a non-lamellar nanocomposite microstructure and the formation of mixed Tin+1AlCn phases (a mix of n = 1, 2), and no indication of layering. Diffusion occurring between the metal/MAX layers in both cases, likely due to the elevated temperatures during the deposition process, is speculated as the likely cause of these resultant microstructures. The mechanical properties of both systems were evaluated using micromechanical (nanoindentation and micro-pillar compression) techniques, which demonstrated high strengths for both systems (Nb system: yield and instability strengths of 4.88±0.1 GPa and 5.57±0.03 GPa, Ti system: yield and instability strength of 5.61±0.28 GPa and 6.21±0.25 GPa). This work highlights the promising mechanical properties of metal/MAX multilayered depositions and summarizes the challenges in PVD synthesis of metal/MAX multilayered nanolaminates.  more » « less
Award ID(s):
2051443
PAR ID:
10565317
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials Science and Engineering: A
Volume:
910
Issue:
C
ISSN:
0921-5093
Page Range / eLocation ID:
146905
Subject(s) / Keyword(s):
Multilayers, nanocomposite, MAX phase, PVD, microcompression, nanoindentation, TEM
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vertically aligned nanocomposite (VAN) thin films have shown strong potential in oxide nanoionics but are yet to be explored in detail in solid-state battery systems. Their 3D architectures are attractive because they may allow enhancements in capacity, current, and power densities. In addition, owing to their large interfacial surface areas, the VAN could serve as models to study interfaces and solid-electrolyte interphase formation. Here, we have deposited highly crystalline and epitaxial vertically aligned nanocomposite films composed of a Li x La 0.32±0.05 (Nb 0.7±0.1 Ti 0.32±0.05 )O 3±δ -Ti 0.8±0.1 Nb 0.17±0.03 O 2±δ -anatase [herein referred to as LL(Nb, Ti)O-(Ti, Nb)O 2 ] electrolyte/anode system, the first anode VAN battery system reported. This system has an order of magnitude increased Li + ionic conductivity over that in bulk Li 3x La 1/3−x NbO 3 and is comparable with the best available Li 3x La 2/3−x TiO 3 pulsed laser deposition films. Furthermore, the ionic conducting/electrically insulating LL(Nb, Ti)O and electrically conducting (Ti, Nb)O 2 phases are a prerequisite for an interdigitated electrolyte/anode system. This work opens up the possibility of incorporating VAN films into an all solid-state battery, either as electrodes or electrolytes, by the pairing of suitable materials. 
    more » « less
  2. Low-density materials show promising prospects for industrial application in engineering, and have remained a research hotspot. The ingots of Al15Zr40Ti28Nb12Cr5, Al15Zr40Ti28Nb12Mo5 and Al15Zr40Ti28Nb12Si5 high-entropy alloys were prepared using an arc melting method. With the addition of the Cr, Mo, and Si, the phase structures of these alloys changed to a dual phase. The Cr and Mo promote the formation of the B2 phase, while the Si promotes the formation of a large amount of the silicides. The compression yield strengths of these alloys are ~1.36 GPa, ~1.27 GPa, and ~1.35 GPa, respectively. The addition of Si and Cr significantly reduces the compression ductility, and the Al15Zr40Ti28Nb12SiMo5 high-entropy alloy exhibits excellent comprehensive mechanical properties. This work investigated the influence of Cr, Mo, and Si on the phase structures and properties of the low-density Al-Zr-Ti-Nb high-entropy alloys, providing theoretical and scientific support for the development of advanced low-density alloys. 
    more » « less
  3. Abstract We present a systematic investigation of thermodynamic stability, phase-reaction, and chemical activity of Al containing disordered Ti 2 (Al-Ga)C MAX phases using machine-learning driven high-throughput framework to understand the oxidation resistance behavior with increasing temperature and exposure to static oxygen. The A-site (at Al) disordering in  Ti 2 AlC MAX (M=Ti, A=Al, X=C) with Ga shows significant change in the chemical activity of Al with increasing temperature and exposure to static oxygen, which is expected to enable surface segregation of Al, thereby, the formation of Al 2 O 3 and improved oxidation resistance. We performed in-depth convex hull analysis of ternary Ti–Al–C, Ti–Ga–C, and Ti–Al–Ga–C based MAX phase, and provide detailed contribution arising from electronic, chemical and vibrational entropies. The thermodynamic analysis shows change in the Gibbs formation enthalpy (Δ G form ) at higher temperatures, which implies an interplay of temperature-dependent enthalpy and entropic contributions in oxidation resistance Ga doped Ti 2 AlC MAX phases. A detailed electronic structure and chemical bonding analysis using crystal orbital Hamilton population method reveal the origin of change in phases stability and in oxidation resistance in disorder Ti 2 (Al 1−x Ga x )C MAX phases. Our electronic structure analysis correlate well with the change in oxidation resistance of Ga doped MAX phases. We believe our study provides a useful guideline to understand to role of alloying on electronic, thermodynamic, and oxidation related mechanisms of bulk MAX phases, which can work as a precursor to understand oxidation behavior of two-dimensional MAX phases, i.e., MXenes (transition metal carbides, carbonitrides and nitrides). 
    more » « less
  4. null (Ed.)
    Quaternary MAX phases, (Ta 1−x Ti x ) 3 AlC 2 ( x = 0.4, 0.62, 0.75, 0.91 or 0.95), have been synthesised via pressureless sintering of TaC, TiC, Ti and Al powders. Via chemical etching of the Al layers, (Ta 0.38 Ti 0.62 ) 3 C 2 T z – a new MXene, has also been synthesised. All materials contain an M-layer solid solution of Ta and Ti, with a variable Ta concentration, paving the way for the synthesis of a range of alloyed (Ta,Ti) 3 C 2 T z MXenes with tuneable compositions for a wide range of potential applications. 
    more » « less
  5. Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic–organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate. 
    more » « less