skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Procedural Fairness Through Decoupling Objectionable Data Generating Components
We reveal and address the frequently overlooked yet important issue of disguised procedural unfairness, namely, the potentially inadvertent alterations on the behavior of neutral (i.e., not problematic) aspects of data generating process, and/or the lack of procedural assurance of the greatest benefit of the least advantaged individuals. Inspired by John Rawls's advocacy for pure procedural justice, we view automated decision-making as a microcosm of social institutions, and consider how the data generating process itself can satisfy the requirements of procedural fairness. We propose a framework that decouples the objectionable data generating components from the neutral ones by utilizing reference points and the associated value instantiation rule. Our findings highlight the necessity of preventing disguised procedural unfairness, drawing attention not only to the objectionable data generating components that we aim to mitigate, but also more importantly, to the neutral components that we intend to keep unaffected.  more » « less
Award ID(s):
2040800 2143895
PAR ID:
10565437
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Conference on Learning Representations (ICLR) 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Procedural modeling has produced amazing results, yet fundamental issues such as controllability and limited user guidance persist. We introduce a novel procedural system called PICO (Procedural Iterative Constrained Optimizer) using PICO-Graph, a procedural model designed with optimization in mind. PICO enables the exploration of generative designs by combining user and environmental constraints into a single framework and using optimization without the need to write procedural rules. The PICO-Graph is a data-flow procedural model consisting of a set of geometry-generating operation nodes. The forward generation is initiated by sending geometric objects from initial nodes. These objects travel through the graph, triggering generation of more objects along the way. We combine the PICO-Graph with evolutionary optimization that allows for exploration of the generated models and the generation of variants. The user defines the geometry-generating operations and the set of constraints; e.g, whether an existing object should be supported by the generated model, whether symmetries exist, etc. PICO then generates geometric models that fulfill the constraints through optimization, allowing interactive user control of constraints. We show PICO on a variety of examples, including generation of procedural chairs, generation of support structures for 3D printing, or generation of procedural terrains matching a given input. 
    more » « less
  2. Content spread inequity is a potential unfairness issue in online social networks, disparately impacting minority groups. In this paper, we view friendship suggestion, a common feature in social network platforms, as an opportunity to achieve an equitable spread of content. In particular, we propose to suggest a subset of potential edges (currently not existing in the network but likely to be accepted) that maximizes content spread while achieving fairness. Instead of re-engineering the existing systems, our proposal builds a fairness wrapper on top of the existing friendship suggestion components. We prove the problem is NP-hard and inapproximable in polynomial time unless P=NP. Therefore, allowing relaxation of the fairness constraint, we propose an algorithm based on LP-relaxation and randomized rounding with fixed approximation ratios on fairness and content spread. We provide multiple optimizations, further improving the performance of our algorithm in practice. Besides, we propose a scalable algorithm that dynamically adds subsets of nodes, chosen via iterative sampling, and solves smaller problems corresponding to these nodes. Besides theoretical analysis, we conduct comprehensive experiments on real and synthetic data sets. Across different settings, our algorithms found solutions with near-zero unfairness while significantly increasing the content spread. Our scalable algorithm could process a graph with half a million nodes on a single machine, reducing the unfairness to around 0.0004 while lifting content spread by 43%. 
    more » « less
  3. null (Ed.)
    Recent advances in big spatial data acquisition and deep learning allow novel algorithms that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic and produces a 3D approximation of an urban area given satellite imagery and global-scale data, including road network, population, and elevation data. By analyzing the values and the distribution of urban data, e.g., parcels, buildings, population, and elevation, we construct a procedural approximation of a city at a large-scale. Our approach has three main components: (1) procedural model generation to create parcel and building geometries, (2) parcel area estimation that trains neural networks to provide initial parcel sizes for a segmented satellite image of a city block, and (3) an optional optimization that can use partial knowledge of overall average building footprint area and building counts to improve results. We demonstrate and evaluate our approach on cities around the globe with widely different structures and automatically yield procedural models with up to 91,000 buildings, and spanning up to 150 km 2 . We obtain both a spatial arrangement of parcels and buildings similar to ground truth and a distribution of building sizes similar to ground truth, hence yielding a statistically similar synthetic urban space. We produce procedural models at multiple scales, and with less than 1% error in parcel and building areas in the best case as compared to ground truth and 5.8% error on average for tested cities. 
    more » « less
  4. Roth, A (Ed.)
    It is well understood that a system built from individually fair components may not itself be individually fair. In this work, we investigate individual fairness under pipeline composition. Pipelines differ from ordinary sequential or repeated composition in that individuals may drop out at any stage, and classification in subsequent stages may depend on the remaining “cohort” of individuals. As an example, a company might hire a team for a new project and at a later point promote the highest performer on the team. Unlike other repeated classification settings, where the degree of unfairness degrades gracefully over multiple fair steps, the degree of unfairness in pipelines can be arbitrary, even in a pipeline with just two stages. Guided by a panoply of real-world examples, we provide a rigorous framework for evaluating different types of fairness guarantees for pipelines. We show that naïve auditing is unable to uncover systematic unfairness and that, in order to ensure fairness, some form of dependence must exist between the design of algorithms at different stages in the pipeline. Finally, we provide constructions that permit flexibility at later stages, meaning that there is no need to lock in the entire pipeline at the time that the early stage is constructed. 
    more » « less
  5. Abstract Procedural modeling allows for an automatic generation of large amounts of similar assets, but there is limited control over the generated output. We address this problem by introducing Automatic Differentiable Procedural Modeling (ADPM). The forward procedural model generates a final editable model. The user modifies the output interactively, and the modifications are transferred back to the procedural model as its parameters by solving an inverse procedural modeling problem. We present an auto‐differentiable representation of the procedural model that significantly accelerates optimization. In ADPM the procedural model is always available, all changes are non‐destructive, and the user can interactively model the 3D object while keeping the procedural representation. ADPM provides the user with precise control over the resulting model comparable to non‐procedural interactive modeling. ADPM is node‐based, and it generates hierarchical 3D scene geometry converted to a differentiable computational graph. Our formulation focuses on the differentiability of high‐level primitives and bounding volumes of components of the procedural model rather than the detailed mesh geometry. Although this high‐level formulation limits the expressiveness of user edits, it allows for efficient derivative computation and enables interactivity. We designed a new optimizer to solve for inverse procedural modeling. It can detect that an edit is under‐determined and has degrees of freedom. Leveraging cheap derivative evaluation, it can explore the region of optimality of edits and suggest various configurations, all of which achieve the requested edit differently. We show our system's efficiency on several examples, and we validate it by a user study. 
    more » « less