In this paper, we study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight matrices when training deep ReLU neural networks. Our results show that training neural networks with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matrices. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict and observe empirically that weight decay is necessary to achieve this bias. Finally, we empirically investigate the connection between this bias and generalization, finding that it has a marginal effect on generalization. Our analysis is based on a minimal set of assumptions and applies to neural networks of any width or depth, including those with residual connections and convolutional layers.
more »
« less
The Janus effects of SGD vs GD: high noise and low rank
It was always obvious that SGD with small minibatch size yields for neural networks much higher asymptotic fluctuations in the updates of the weight matrices than GD. It has also been often reported that SGD in deep RELU networks shows empirically a low-rank bias in the weight matrices. A recent theoretical analysis derived a bound on the rank and linked it to the size of the SGD fluctuations [25]. In this paper, we provide an empirical and theoretical analysis of the convergence of SGD vs GD, first for deep RELU networks and then for the case of linear regression, where sharper estimates can be obtained and which is of independent interest. In the linear case, we prove that the component $$W^\perp$$ of the matrix $$W$$ corresponding to the null space of the data matrix $$X$$ converges to zero for both SGD and GD, provided the regularization term is non-zero. Because of the larger number of updates required to go through all the training data, the convergence rate {\it per epoch} of these components is much faster for SGD than for GD. In practice, SGD has a much stronger bias than GD towards solutions for weight matrices $$W$$ with high fluctuations -- even when the choice of mini batches is deterministic -- and low rank, provided the initialization is from a random matrix. Thus SGD with non-zero regularization, shows the coupled phenomenon of asymptotic noise and a low-rank bias-- unlike GD.
more »
« less
- Award ID(s):
- 2134108
- PAR ID:
- 10565438
- Publisher / Repository:
- Center for Brains, Minds and Machines (CBMM)
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Massachusetts Institute of Technology
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore convergence of deep neural networks with the popular ReLU activation function, as the depth of the networks tends to infinity. To this end, we introduce the notion of activation domains and activation matrices of a ReLU network. By replacing applications of the ReLU activation function by multiplications with activation matrices on activation domains, we obtain an explicit expression of the ReLU network. We then identify the convergence of the ReLU networks as convergence of a class of infinite products of matrices. Sufficient and necessary conditions for convergence of these infinite products of matrices are studied. As a result, we establish necessary conditions for ReLU networks to converge that the sequence of weight matrices converges to the identity matrix and the sequence of the bias vectors converges to zero as the depth of ReLU networks increases to infinity. Moreover, we obtain sufficient conditions in terms of the weight matrices and bias vectors at hidden layers for pointwise convergence of deep ReLU networks. These results provide mathematical insights to convergence of deep neural networks. Experiments are conducted to mathematically verify the results and to illustrate their potential usefulness in initialization of deep neural networks.more » « less
-
In this paper we prove that Local (S)GD (or FedAvg) can optimize deep neural networks with Rectified Linear Unit (ReLU) activation function in polynomial time. Despite the established convergence theory of Local SGD on optimizing general smooth functions in communication-efficient distributed optimization, its convergence on non-smooth ReLU networks still eludes full theoretical understanding. The key property used in many Local SGD analysis on smooth function is gradient Lipschitzness, so that the gradient on local models will not drift far away from that on averaged model. However, this decent property does not hold in networks with non-smooth ReLU activation function. We show that, even though ReLU network does not admit gradient Lipschitzness property, the difference between gradients on local models and average model will not change too much, under the dynamics of Local SGD. We validate our theoretical results via extensive experiments. This work is the first to show the convergence of Local SGD on non-smooth functions, and will shed lights on the optimization theory of federated training of deep neural networks.more » « less
-
We overview several properties -- old and new -- of training overparametrized deep networks under the square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep homogeneous ReLU networks. We study the convergence to a solution with the absolute minimum $$\rho$$, which is the product of the Frobenius norms of each layer weight matrix, when normalization by Lagrange multipliers (LM) is used together with Weight Decay (WD) under different forms of gradient descent. A main property of the minimizers that bounds their expected error {\it for a specific network architecture} is $$\rho$$. In particular, we derive novel norm-based bounds for convolutional layers that are orders of magnitude better than classical bounds for dense networks. Next we prove that quasi-interpolating solutions obtained by Stochastic Gradient Descent (SGD) in the presence of WD have a bias towards low rank weight matrices -- that, as we also explain, should improve generalization. The same analysis predicts the existence of an inherent SGD noise for deep networks. In both cases, we verify our predictions experimentally. We then predict Neural Collapse and its properties without any specific assumption -- unlike other published proofs. Our analysis supports the idea that the advantage of deep networks relative to other classifiers is greater for the problems that are appropriate for sparse deep architectures such as CNNs. The deep reason compositionally sparse target functions can be approximated well by ``sparse'' deep networks without incurring in the curse of dimensionality.more » « less
-
We analyze deep ReLU neural networks trained with mini-batch stochastic gradient decent and weight decay. We prove that the source of the SGD noise is an implicit low rank constraint across all of the weight matrices within the network. Furthermore, we show, both theoretically and empirically, that when training a neural network using Stochastic Gradient Descent (SGD) with a small batch size, the resulting weight matrices are expected to be of small rank. Our analysis relies on a minimal set of assumptions and the neural networks may include convolutional layers, residual connections, as well as batch normalization layers.more » « less
An official website of the United States government

