We study deep neural networks for the multi-label classification (MLab) task through the lens of neural collapse (NC). Previous works have been restricted to the multi-class classification setting and discovered a prevalent NC phenomenon comprising of the following properties for the last-layer features: (i) the variability of features within every class collapses to zero, (ii) the set of feature means form an equi-angular tight frame (ETF), and (iii) the last layer classifiers collapse to the feature mean upon some scaling. We generalize the study to multi-label learning, and prove for the first time that a generalized NC phenomenon holds with the "pick-all-label'' formulation, which we term as MLab NC. While the ETF geometry remains consistent for features with a single label, multi-label scenarios introduce a unique combinatorial aspect we term the "tag-wise average" property, where the means of features with multiple labels are the scaled averages of means for single-label instances. Theoretically, under proper assumptions on the features, we establish that the only global optimizer of the pick-all-label cross-entropy loss satisfy the multi-label NC. In practice, we demonstrate that our findings can lead to better test performance with more efficient training techniques for MLab learning.
more »
« less
Feature learning in deep classifiers through Intermediate Neural Collapse
In this paper, we conduct an empirical study of the feature learning process in deep classifiers. Recent research has identified a training phenomenon called Neural Collapse (NC), in which the top-layer feature embeddings of samples from the same class tend to concentrate around their means, and the top layer’s weights align with those features. Our study aims to investigate if these properties extend to intermediate layers. We empirically study the evolution of the covariance and mean of representations across different layers and show that as we move deeper into a trained neural network, the within-class covariance decreases relative to the between-class covariance. Additionally, we find that in the top layers, where the between-class covariance is dominant, the subspace spanned by the class means aligns with the subspace spanned by the most significant singular vector components of the weight matrix in the corresponding layer. Finally, we discuss the relationship between NC and Associative Memories (Willshaw et al., 1969).
more »
« less
- Award ID(s):
- 2134108
- PAR ID:
- 10565445
- Publisher / Repository:
- Center for Brains, Minds and Machines (CBMM)
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Massachusetts Institute of Technology
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we study the geometry of quadratic covariance bounds on the estimation error covariance, in a properly defined Hilbert space of random variables. We show that a lower bound on the error covariance may be represented by the Grammian of the error score after projection onto the subspace spanned by the measurement scores. The Grammian is defined with respect to inner products in a Hilbert space of second order random variables. This geometric result holds for a large class of quadratic covariance bounds including the Barankin, Cramer-Rao, and Bhattacharyya bounds, where each bound is characterized by its corresponding measurement scores. When parameters consist of essential parameters and nuisance parameters, the Cram´er-Rao covariance bound is the inverse of the Grammian of essential scores after projection onto the subspace orthogonal to the subspace spanned by the nuisance scores. In two examples, we show that for complex multivariate normal measurements with parameterized mean or covariance, there exist well-known Euclidean space geometries for the general Hilbert space geometry derived in this paper.more » « less
-
Graph neural networks (GNNs) have become increasingly popular for classification tasks on graph-structured data. Yet, the interplay between graph topology and feature evolution in GNNs is not well understood. In this paper, we focus on node- wise classification, illustrated with community detection on stochastic block model graphs, and explore the feature evolution through the lens of the “Neural Collapse” (NC) phenomenon. When training instance-wise deep classifiers (e.g. for image classification) beyond the zero training error point, NC demonstrates a reduction in the deepest features’ within-class variability and an increased alignment of their class means to certain symmetric structures. We start with an empirical study that shows that a decrease in within-class variability is also prevalent in the node-wise classification setting, however, not to the extent observed in the instance-wise case. Then, we theoretically study this distinction. Specifically, we show that even an “optimistic” mathematical model requires that the graphs obey a strict structural condition in order to possess a minimizer with exact collapse. Interestingly, this condition is viable also for heterophilic graphs and relates to recent empirical studies on settings with improved GNNs’ generalization. Furthermore, by studying the gradient dynamics of the theoretical model, we provide reasoning for the partial collapse observed empirically. Finally, we present a study on the evolution of within- and between-class feature variability across layers of a well-trained GNN and contrast the behavior with spectral methods.more » « less
-
Out-of-distribution (OOD) detection and OOD generalization are widely studied in Deep Neural Networks (DNNs), yet their relationship remains poorly understood. We empirically show that the degree of Neural Collapse (NC) in a network layer is inversely related with these objectives: stronger NC improves OOD detection but degrades generalization, while weaker NC enhances generalization at the cost of detection. This trade-off suggests that a single feature space cannot simultaneously achieve both tasks. To address this, we develop a theoretical framework linking NC to OOD detection and generalization. We show that entropy regularization mitigates NC to improve generalization, while a fixed Simplex ETF projector enforces NC for better detection. Based on these insights, we propose a method to control NC at different DNN layers. In experiments, our method excels at both tasks across OOD datasets and DNN architectures.more » « less
-
A recent study by De et al. (2022) has reported that large-scale representation learning through pre-training on a public dataset significantly enhances differentially private (DP) learning in downstream tasks, despite the high dimensionality of the feature space. To theoretically explain this phenomenon, we consider the setting of a layer-peeled model in representation learning, which results in interesting phenomena related to learned features in deep learning and transfer learning, known as Neural Collapse (NC). Within the framework of NC, we establish an error bound indicating that the misclassification error is independent of dimension when the distance between actual features and the ideal ones is smaller than a threshold. Additionally, the quality of the features in the last layer is empirically evaluated under different pre-trained models within the framework of NC, showing that a more powerful transformer leads to a better feature representation. Furthermore, we reveal that DP fine-tuning is less robust compared to fine-tuning without DP, particularly in the presence of perturbations. These observations are supported by both theoretical analyses and experimental evaluation. Moreover, to enhance the robustness of DP fine-tuning, we suggest several strategies, such as feature normalization or employing dimension reduction methods like Principal Component Analysis (PCA). Empirically, we demonstrate a significant improvement in testing accuracy by conducting PCA on the last-layer features.more » « less
An official website of the United States government

