skip to main content


This content will become publicly available on August 2, 2025

Title: Enhanced Atlantic Meridional Mode predictability in a high-resolution prediction system

Accurate prediction of sea surface temperatures (SSTs) in the tropical North Atlantic on multiyear timescales is of paramount importance due to its notable impact on tropical cyclone activity. Recent advances in high-resolution climate predictions have demonstrated substantial improvements in the skill of multiyear SST prediction. This study reveals a notable enhancement in high-resolution tropical North Atlantic SST prediction that stems from a more realistic representation of the Atlantic Meridional Mode and the associated wind-evaporation-SST feedback. The key to this improvement lies in the enhanced surface wind response to changes in cross-equatorial SST gradients, resulting from Intertropical Convergence Zone bias reduction when atmospheric model resolution is increased, which, in turn, amplifies the positive feedback between latent and sensible surface heat fluxes and SST anomalies. These advances in high-resolution climate prediction hold promise for extending tropical cyclone forecasts at multiyear timescales.

 
more » « less
Award ID(s):
2231237
PAR ID:
10565650
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
31
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the subtropical Northeast Pacific (NEP), highly reflective low clouds interact with underlying sea surface temperature (SST) to constitute a local positive feedback. Recent modeling studies showed that, together with wind–evaporation–SST (WES) feedback, the summertime low cloud–SST feedback promotes nonlocal trade wind variations, modulating subsequent evolution of El Niño–Southern Oscillation (ENSO). This study aims to identify drivers of summertime low-cloud variations, using satellite observations and global atmosphere model simulations forced with observed SST. A transbasin teleconnection is identified, where the north tropical Atlantic (NTA) warming induced by the North Atlantic Oscillation (NAO) increases precipitation, exciting warm Rossby waves that extend into the NEP. The resultant enhancement of static stability promotes summertime low cloud–SST variability. By regressing out the effects of the preceding ENSO and NTA SST, atmospheric internal variability over the extratropical North Pacific, including the North Pacific Oscillation (NPO), is found to drive the NEP cooling by latent heat loss and subsequent summer low cloud–SST variability. With the help of the background trade winds and WES feedback, the SST anomalies extend southwestward from the low-cloud region, accompanied by ENSO in the following winter. This suggests the nonlocal effects of low clouds identified by recent studies. Analysis of a 500-yr climate model simulation corroborates the NTA and NPO forcing of NEP low cloud–SST variability and subsequent ENSO.

     
    more » « less
  2. Abstract

    Most climate models project an enhanced mean sea surface temperature (SST) warming in the equatorial Pacific and Atlantic, and a zonal SST dipole in the Indian Ocean. The remote influences of these SST change patterns remain uncertain. To examine the extent to which the patterns of SST changes in the tropical Indian and Atlantic Oceans modulate the warming in the tropical Pacific Ocean, we compare nudging experiments with prescribed structured and uniform SST changes in the tropics outside the Pacific. We find that the warming patterns in the tropical Indian and Atlantic Oceans, respectively, drive a canonical La Niña‐like and elongated equatorial cooling through the Bjerknes feedback, acting to attenuate the warming in the equatorial Pacific substantially. The different SST cooling responses emanate from subtle differences between the initial wind forcing driven by the two basins' SST change patterns. These results have significant implications for future climate change projections.

     
    more » « less
  3. Abstract

    Our study investigates the global impact of midlatitude cyclones on extreme wind speed events in both hemispheres under a warmer climate. Using the latest version of the high-resolution ≈ 50 km grid-spacing atmospheric climate model AM4, developed by the Geophysical Fluid Dynamics Laboratory, we conducted simulations covering the 71-years period 1949–2019 for both the present-day climate and an idealised future global warming climate scenario with a homogeneous Sea Surface Temperature (SST) increase by 2 K. Our findings reveal that extreme near-surface wind speeds increase by up to 3% K−1towards the poles while decrease by a similar amount in the lower midlatitudes. When considering only extreme wind speed events objectively attributed to midlatitude cyclones, we observe a migration by the same amount towards higher latitudes both in percentage per degree SST warming and absolute value. The total number of midlatitude cyclones decreases by roughly 4%, but the proportion of cyclone-associated extreme wind speed events increases by 10% in a warmer climate. Finally, Northwestern Europe, the British Isles, and the West Coast of North America are identified as hot spots with the greatest socio-economic impacts from increased cyclone-associated extreme winds.

     
    more » « less
  4. Abstract

    Historical records of Atlantic hurricane activity, extending back to 1851, show increasing activity over time, but much or all of this trend has been attributed to lack of observations in the early portion of the record. Here we use a tropical cyclone downscaling model driven by three global climate analyses that are based mostly on sea surface temperature and surface pressure data. The results support earlier statistically-based inferences that storms were undercounted in the 19thcentury, but in contrast to earlier work, show increasing tropical cyclone activity through the period, interrupted by a prominent hurricane drought in the 1970s and 80 s that we attribute to anthropogenic aerosols. In agreement with earlier work, we show that most of the variability of North Atlantic tropical cyclone activity over the last century was directly related to regional rather than global climate change. Most metrics of tropical cyclones downscaled over all the tropics show weak and/or insignificant trends over the last century, illustrating the special nature of North Atlantic tropical cyclone climatology.

     
    more » « less
  5. Abstract

    The largest sea surface temperature (SST) anomalies associated with Atlantic Multidecadal Variability (AMV) occur over the Atlantic subpolar gyre, yet it is the tropical Atlantic from where the global impacts of AMV originate. Processes that communicate SST change from the subpolar Atlantic gyre to the tropical North Atlantic thus comprise a crucial mechanism of AMV. Here we use idealized model experiments to show that such communication is accomplished by an “atmospheric bridge.” Our results demonstrate an unexpected asymmetry: the atmosphere is effective in communicating cold subpolar SSTs to the north tropical Atlantic, via an immediate extratropical atmospheric circulation change that invokes slower wind‐driven evaporative cooling along the Eastern Atlantic Basin and into the tropics. Warm subpolar SST anomalies do not elicit a robust tropical Atlantic response. Our results highlight a key dynamical feature of AMV for which warm and cold phases are not opposites.

     
    more » « less