skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climatic Drivers for the Variation of Gross Primary Productivity Across Terrestrial Ecosystems in the United States
Abstract Temperature and water stress are important factors limiting the gross primary productivity (GPP) in terrestrial ecosystems, yet the extent of their influence across ecosystems remains uncertain. This study examines how surface air temperature, soil water availability (SWA) and vapor pressure deficit (VPD) influence ecosystem light use efficiency (LUE), a critical metric for assessing GPP, across different ecosystems and climatic zones at 80 flux tower sites based on in situ measurements and data assimilation products. Results indicate that LUE increases with temperature in spring, with higher correlation coefficients in colder regions (0.79–0.82) than in warmer regions (0.68–0.78). LUE reaches a plateau earlier in the season in warmer regions. LUE variations in summer are mainly driven by SWA, exhibiting a positive correlation indicative of a water‐limited regime. The relationship between the daily LUE and daytime temperature shows a clear seasonal hysteresis at many sites, with a higher LUE in spring than in fall under the same temperature, likely resulting from younger leaves being more efficient in photosynthesis. Drought stress influences LUE through SWA in all ranges of water availability; VPD variation under moderate conditions does not have a clear influence on LUE, but extremely high VPD (exceeding the threshold of 1.6 kPa, often observed during extreme drought‐heat events) causes a dramatic reduction of LUE. Our findings provide insight into how ecosystem productivities respond to climate variability and how they may change under the influence of more frequent and severe heat and drought events projected for the future.  more » « less
Award ID(s):
2022036
PAR ID:
10565710
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
129
Issue:
8
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Drought is often thought to reduce ecosystem photosynthesis. However, theory suggests there is potential for increased photosynthesis during meteorological drought, especially in energy-limited ecosystems. Here, we examine the response of photosynthesis (gross primary productivity, GPP) to meteorological drought across the water-energy limitation spectrum. We find a consistent increase in eddy covariance GPP during spring drought in energy-limited ecosystems (83% of the energy-limited sites). Half of spring GPP sensitivity to precipitation was predicted solely from the wetness index (R2 = 0.47,p < 0.001), with weaker relationships in summer and fall. Our results suggest GPP increases during spring drought for 55% of vegetated Northern Hemisphere lands ( >30° N). We then compare these results to terrestrial biosphere model outputs and remote sensing products. In contrast to trends detected in eddy covariance data, model mean GPP always declined under spring precipitation deficits after controlling for air temperature and light availability. While remote sensing products captured the observed negative spring GPP sensitivity in energy-limited ecosystems, terrestrial biosphere models proved insufficiently sensitive to spring precipitation deficits. 
    more » « less
  2. Abstract As global mean temperature rises, extreme drought events are expected to increasingly affect regions of the United States that are crucial for agriculture, forestry, and natural ecology. A pressing need is to understand and anticipate the conditions under which extreme drought causes catastrophic failure to vegetation in these areas. To better predict drought impacts on ecosystems, we first must understand how specific drivers, namely, atmospheric aridity and soil water stress, affect land surface processes during the evolution of flash drought events. In this study, we evaluated when vapor pressure deficit (VPD) and soil moisture thresholds corresponding to photosynthetic shutdown were crossed during flash drought events across different climate zones and land surface characteristics in the United States. First, the Dynamic Canopy Biophysical Properties (DCBP) model was used to estimate the thresholds that define reduced photosynthesis by assimilating vegetation phenology data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to a predictive phenology model. Next, we characterized and quantified flash drought onset, intensity, and duration using the standardized evaporative stress ratio (SESR) and NLDAS-2 reanalysis. Once periods of flash drought were identified, we investigated how VPD and soil moisture coevolved across regions and plant functional types. Results demonstrate that croplands and grasslands tend to be more sensitive to soil water limitations than trees across different regions of the United States. We found that whether VPD or soil moisture was the primary driver of plant water stress during drought was largely region specific. The results of this work will help to inform land managers of early warning signals relevant for specific ecosystems under threat of flash drought events. 
    more » « less
  3. Climate models predict that water limited regions around the world will become drier and warmer in the near future, including southwestern North America. We developed a large-scale experimental system that allows testing of the ecosystem impacts of precipitation changes. Four treatments were applied to 1600 m2 plots (40 m × 40 m), each with three replicates in a piñon pine (Pinus edulis) and juniper (Juniper monosperma) ecosystem. These species have extensive root systems, requiring large-scale manipulation to effectively alter soil water availability.  Treatments consisted of: 1) irrigation plots that receive supplemental water additions, 2) drought plots that receive 55% of ambient rainfall, 3) cover-control plots that receive ambient precipitation, but allow determination of treatment infrastructure artifacts, and 4) ambient control plots. Our drought structures effectively reduced soil water potential and volumetric water content compared to the ambient, cover-control, and water addition plots. Drought and cover control plots experienced an average increase in maximum soil and air temperature at ground level of 1-4° C during the growing season compared to ambient plots, and concurrent short-term diurnal increases in maximum air temperature were also observed directly above and below plastic structures. Our drought and irrigation treatments significantly influenced tree predawn water potential, sap-flow, and net photosynthesis, with drought treatment trees exhibiting significant decreases in physiological function compared to ambient and irrigated trees. Supplemental irrigation resulted in a significant increase in both plant water potential and xylem sap-flow compared to trees in the other treatments. This experimental design effectively allows manipulation of plant water stress at the ecosystem scale, permits a wide range of drought conditions, and provides prolonged drought conditions comparable to historical droughts in the past – drought events for which wide-spread mortality in both these species was observed.  Soil temperature impacts both the abiotic and biotic processes at our site. The rate of evaporation, soil water content, VPD, and many other environmental factors are directly or indirectly affected by the temperature of the system. By monitoring the soil temperature at our site, we were able to determine its influence on the target trees and their associated physiological functions. Differences in soil temperature between plots can be impacted by the drought and cover-control structures used in our rainfall-manipulation treatments. Therefore, measuring soil temperatures in all three cover types and all four treatment regimes also allowed us to tease-out the temperature differences that were an artifact of the treatment structures as opposed to the actual treatments.  
    more » « less
  4. Abstract Understanding the controlling mechanisms of soil properties on ecosystem productivity is essential for sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of topsoil depth (e.g., A horizons) on long‐term ecosystem productivity. We used nationwide observations (n = 2401) of topsoil depth and multiple scaled datasets of gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture, shrubland) over 36 years (1986–2021) across the conterminous USA. The relationship between topsoil depth and GPP is primarily associated with water availability, which is particularly significant in arid regions under grassland, shrubland, and cropland (r = .37, .32, .15, respectively,p < .0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to 128 g C m−2 year−1in arid regions (r = .33 and .45,p < .0001). Paired comparison of relatively shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil type) constant showed that the positive control of topsoil depth on GPP occurred primarily in cropland (0.73, confidence interval of 0.57–0.84) and shrubland (0.75, confidence interval of 0.40–0.94). The GPP difference between deep and shallow topsoils was small and not statistically significant. Despite the positive control of topsoil depth on productivity in arid regions, its contribution (coefficients: .09–.33) was similar to that of heat (coefficients: .06–.39) but less than that of water (coefficients: .07–.87). The resilience of ecosystem productivity to climate extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability and decreased the variability of GPP under climate extremes in most ecosystems, especially in shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil depth representation and moisture‐retention mechanisms are critical for carbon‐sequestration ecosystem services under a changing climate. These findings and relationships should also be included in Earth system models. 
    more » « less
  5. Abstract Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010 Science 327 418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter et al 2014 Nature 509 600–3, Ahlstrom et al 2015 Science 348 895–9, Zhang et al 2018 Glob. Change Biol . 24 3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake. 
    more » « less