Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain‐fed croplands, and half the sites having additional irrigated cropland plots. Rain‐fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain‐fed pairs (
Understanding the controlling mechanisms of soil properties on ecosystem productivity is essential for sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of topsoil depth (e.g., A horizons) on long‐term ecosystem productivity. We used nationwide observations (
- NSF-PAR ID:
- 10464221
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 29
- Issue:
- 23
- ISSN:
- 1354-1013
- Format(s):
- Medium: X Size: p. 6794-6811
- Size(s):
- ["p. 6794-6811"]
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract p < .0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p < .0001). The losses occurred just 30–100 years after land‐use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194–242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward‐advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change. -
The varied topography and large elevation gradients that characterize the arid and semi-arid Southwest create a wide range of climatic conditions - and associated biomes - within relatively short distances. This creates an ideal experimental system in which to study the effects of climate on ecosystems. Such studies are critical given that the Southwestern U.S. has already experienced changes in climate that have altered precipitation patterns (Mote et al. 2005), and stands to experience dramatic climate change in the coming decades (Seager et al. 2007; Ting et al. 2007). Climate models currently predict an imminent transition to a warmer, more arid climate in the Southwest (Seager et al. 2007; Ting et al. 2007). Thus, high elevation ecosystems, which currently experience relatively cool and mesic climates, will likely resemble their lower elevation counterparts, which experience a hotter and drier climate. In order to predict regional changes in carbon storage, hydrologic partitioning and water resources in response to these potential shifts, it is critical to understand how both temperature and soil moisture affect processes such as evaportranspiration (ET), total carbon uptake through gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange of carbon, water and energy across elevational gradients. We are using a sequence of six widespread biomes along an elevational gradient in New Mexico -- ranging from hot, arid ecosystems at low elevations to cool, mesic ecosystems at high elevation to test specific hypotheses related to how climatic controls over ecosystem processes change across this gradient. We have an eddy covariance tower and associated meteorological instruments in each biome which we are using to directly measure the exchange of carbon, water and energy between the ecosystem and the atmosphere. This gradient offers us a unique opportunity to test the interactive effects of temperature and soil moisture on ecosystem processes, as temperature decreases and soil moisture increases markedly along the gradient and varies through time within sites. This dataset examines how different stages of burn affects above-ground biomass production (ANPP) in a mixed desert-grassland. Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and foliage, over time and incorporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV292, "Flux Tower Seasonal Biomass and Seasonal and Annual NPP Data."more » « less
-
Predicted climate change extremes, such as severe or prolonged drought, may considerably impact carbon (C) and nitrogen (N) cycling in water-limited ecosystems. However, we lack a clear and mechanistic understanding of how extreme climate change events impact ecosystem processes belowground. This study investigates the effects of five years of reoccurring extreme growing season drought (66% reduction, extreme drought treatment) and two-month delay in monsoon precipitation (delayed monsoon treatment) on belowground productivity and biogeochemistry in two geographically adjacent semi-arid grasslands: Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis. After five years, extreme drought reduced belowground net primary productivity (BNPP) in the Chihuahuan Desert grassland but not in the Great Plains grassland. Across both grasslands, extreme drought increased soil pH and available soil nutrients nitrate and phosphate. The delayed monsoon treatment reduced BNPP in both grasslands. However, while available soil nitrate decreased in the Chihuahuan Desert grassland, the delayed monsoon treatment overall had little effect on soil ecosystem properties. Extreme drought and delayed monsoon treatments did not significantly impact soil microbial biomass, exoenzyme potentials, or soil C stocks relative to ambient conditions. Our study demonstrates that soil microbial biomass and exoenzyme activity in semi-arid grasslands are resistant to five years of extreme and prolonged growing season drought despite changes to soil moisture, belowground productivity, soil pH, and nutrient availabilitymore » « less
-
Abstract Through their rooting profiles and water demands, plants affect the distribution of water in the soil profile. Simultaneously, soil water content controls plant development and interactions within and between plant communities. These plant-soil water feedbacks might vary across plant communities with different rooting depths and species composition. In semiarid environments, understanding these differences will be essential to predict how ecosystems will respond to drought, which may become more frequent and severe with climate change. In this study, we tested how plant-soil water feedbacks responded to drought in two contrasting ecosystem types—grassland and shrubland—in the coastal foothills of southern California. During years 5–8 of an ongoing precipitation manipulation experiment, we measured changes in plant communities and soil moisture up to 2 m depth. We observed different water use patterns in grassland and shrubland communities with distinct plant functional types and water use strategies. Drought treatment did not affect perennial, deep-rooted shrubs because they could access deep soil water pools. However, mid-rooted shrubs were sensitive to drought and experienced decreased productivity and die-off. As a result, water content actually increased with drought at soil depths from 50–150 cm. In grassland, biomass production by annual species, including annual grasses and forbs, declined with drought, resulting in lower water uptake from the surface soil layer. An opportunistic “live fast, die young“ life strategy allowed these species to recover quickly once water availability increased. Our results show how drought interacts with plant community composition to affect the soil water balance of semiarid ecosystems, information that could be integrated into global scale models.
-
Predicted climate change extremes, such as severe and prolonged drought, may profoundly impact biogeochemical processes like carbon and nitrogen cycling in water-limited ecosystems. To increase our understanding of how extreme climate events impact belowground ecosystem processes, we investigated the effects of five years of severe growing season drought and two-month delay in monsoon precipitation on belowground productivity and biogeochemical processes in two semi-arid grasslands. This experiment takes place during the fifth year of the Extreme Drought in Grassland Experiment (EDGE) at the Sevilleta National Wildlife Refuge (SNWR), a Long-Term Ecological Research in central New Mexico, USA. The two grassland sites a Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis are ~5km apart in the SWNR. The EDGE platform was established in the spring of 2012 (pre-treatment). Each site contains three treatments (ten replicates): ambient rainfall, extreme growing season drought, and delayed monsoon. The extreme drought treatment reduces growing season rainfall (April through September) each year by 66%, which equates to a 50% reduction of annual precipitation while maintaining natural precipitation patterns. There are 10 replicates per treatment within each site. All plots are 3 x 4 m in size and are paired spatially into blocks with treatments assigned randomly within a block. We measured an array of belowground and biogeochemical variables. Each variable was measured either once, twice, or three times (specific information on sampling scheme for each measured variable in methods section). Belowground net primary productivity, standing crop root biomass, total organic carbon, and total nitrogen were measured once. Extractable organic carbon, extractable total nitrogen, microbial biomass carbon, microbial biomass nitrogen and extracellular enzymes were measured twice. Available soil nitrate, available soil ammonium, and available soil phosphate were measured three times.more » « less