skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 3, 2026

Title: Incremental topological ordering and cycle detection with predictions
This paper leverages the framework of algorithms-with-predictions to design data structures for two fundamental dynamic graph problems: incremental topological ordering and cycle detection. In these problems, the input is a directed graph on n nodes, and the m edges arrive one by one. The data structure must maintain a topological ordering of the vertices at all times and detect if the newly inserted edge creates a cycle. The theoretically best worst-case algorithms for these problems have high update cost (polynomial in n and m). In practice, greedy heuristics (that recompute the solution from scratch each time) perform well but can have high update cost in the worst case. In this paper, we bridge this gap by leveraging predictions to design a learned new data structure for the problems. Our data structure guarantees consistency, robustness, and smoothness with respect to predictions--that is, it has the best possible running time under perfect predictions, never performs worse than the best-known worst-case methods, and its running time degrades smoothly with the prediction error. Moreover, we demonstrate empirically that predictions, learned from a very small training dataset, are sufficient to provide significant speed-ups on real datasets.  more » « less
Award ID(s):
1947789
PAR ID:
10565740
Author(s) / Creator(s):
; ; ;
Editor(s):
Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Oliver, Nuria; Scarlett, Jonathan; Berkenkamp, Felix
Publisher / Repository:
PMLR
Date Published:
Volume:
235
Page Range / eLocation ID:
35240--35254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Woodruff, David P. (Ed.)
    We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $$\alpha$$ of the graph, in, either, an amortised update time of $$O(\log^2 n \log \alpha)$$, or a worst-case update time of $$O(\log^3 n \log \alpha)$$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $$O(\log n \log \alpha)$$, amortised, or $$O(\log ^2 n \log \alpha)$$, worst-case, for the problem of maintaining an edge-orientation with at most $$O(\alpha + \log n)$$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $$n$$ and $$\alpha$$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $$(1+\varepsilon)$$ approximation of the maximum subgraph density, $$\rho$$, of the dynamic graph. Our algorithms have update times of $$O(\varepsilon^{-6}\log^3 n \log \rho)$$ worst-case, and $$O(\varepsilon^{-4}\log^2 n \log \rho)$$ amortised, respectively. We may output a subgraph $$H$$ of the input graph where its density is a $$(1+\varepsilon)$$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $$O(\varepsilon^{-6}\log ^4 n)$$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $$O(\varepsilon^{-6}\log^3 n \log \alpha)$$ worst-case update time algorithm for maintaining a $$(1~+~\varepsilon)\textnormal{OPT} + 2$$ approximation of the optimal out-orientation of a graph with adaptive arboricity $$\alpha$$, improving the $$O(\varepsilon^{-6}\alpha^2 \log^3 n)$$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $$O(\alpha)$$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $$\Delta+1$$ colouring, and matrix vector multiplication. All update times are worst-case $$O(\alpha+\log^2n \log \alpha)$$, where $$\alpha$$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $$O(\alpha^2 + \log^2 n)$$, and by Neiman and Solomon from STOC 2013 runs in time $$O(\sqrt{m})$$. We give improved running times whenever the arboricity $$\alpha \in \omega( \log n\sqrt{\log\log n})$$. 
    more » « less
  2. A growing line of work shows how learned predictions can be used to break through worst-cast barriers to improve the running time of an algorithm. However, incorporating predictions into data structures with strong theoretical guarantees remains underdeveloped. This paper takes a step in this direction by showing that predictions can be leveraged in the fundamental online list labeling problem. In the problem, n items arrive over time and must be stored in sorted order in an array of size Θ(n). The array slot of an element is its label and the goal is to maintain sorted order while minimizing the total number of elements moved (i.e., relabeled). We design a new list labeling data structure and bound its performance in two models. In the worst-case learning-augmented model, we give guarantees in terms of the error in the predictions. Our data structure provides strong theoretical guarantees— it is optimal for any prediction error and guarantees the best-known worst-case bound even when the predictions are entirely erroneous. We also consider a stochastic error model and bound the performance in terms of the expectation and variance of the error. Finally, the theoretical results are demonstrated empirically. In particular, we show that our data structure performs well on numerous real datasets, including temporal datasets where predictions are constructed from elements that arrived in the past (as is typically done in a practical use case). 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    Algorithms with predictions is a new research direction that leverages machine learned predictions for algorithm design. So far a plethora of recent works have incorporated predictions to improve on worst-case bounds for online problems. In this paper, we initiate the study of complexity of dynamic data structures with predictions, including dynamic graph algorithms. Unlike online algorithms, the goal in dynamic data structures is to maintain the solution efficiently with every update. We investigate three natural models of prediction: (1) δ-accurate predictions where each predicted request matches the true request with probability δ, (2) list-accurate predictions where a true request comes from a list of possible requests, and (3) bounded delay predictions where the true requests are a permutation of the predicted requests. We give general reductions among the prediction models, showing that bounded delay is the strongest prediction model, followed by list-accurate, and δ-accurate. Further, we identify two broad problem classes based on lower bounds due to the Online Matrix Vector (OMv) conjecture. Specifically, we show that locally correctable dynamic problems have strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction setting, unless list-accurate predictions are perfect. Moreover, we show that locally reducible dynamic problems have time complexity that degrades gracefully with the quality of bounded delay predictions. We categorize problems with known OMv lower bounds accordingly and give several upper bounds in the delay model that show that our lower bounds are almost tight. We note that concurrent work by v.d.Brand et al. [SODA '24] and Liu and Srinivas [arXiv:2307.08890] independently study dynamic graph algorithms with predictions, but their work is mostly focused on showing upper bounds. 
    more » « less
  4. null (Ed.)
    We study the communication cost (or message complexity) of fundamental distributed symmetry breaking problems, namely, coloring and MIS. While significant progress has been made in understanding and improving the running time of such problems, much less is known about the message complexity of these problems. In fact, all known algorithms need at least Ω(m) communication for these problems, where m is the number of edges in the graph. We addressthe following question in this paper: can we solve problems such as coloring and MIS using sublinear, i.e., o(m) communication, and if sounder what conditions? In a classical result, Awerbuch, Goldreich, Peleg, and Vainish [JACM 1990] showed that fundamental global problems such asbroadcast and spanning tree construction require at least o(m) messages in the KT-1 Congest model (i.e., Congest model in which nodes have initial knowledge of the neighbors' ID's) when algorithms are restricted to be comparison-based (i.e., algorithms inwhich node ID's can only be compared). Thirty five years after this result, King, Kutten, and Thorup [PODC 2015] showed that onecan solve the above problems using Õ(n) messages (n is the number of nodes in the graph) in Õ(n) rounds in the KT-1 Congest model if non-comparison-based algorithms are permitted. An important implication of this result is that one can use the synchronous nature of the KT-1 Congest model, using silence to convey information,and solve any graph problem using non-comparison-based algorithms with Õ(n) messages, but this takes an exponential number of rounds. In the asynchronous model, even this is not possible. In contrast, much less is known about the message complexity of local symmetry breaking problems such as coloring and MIS. Our paper fills this gap by presenting the following results. Lower bounds: In the KT-1 CONGEST model, we show that any comparison-based algorithm, even a randomized Monte Carlo algorithm with constant success probability, requires Ω(n 2) messages in the worst case to solve either (△ + 1)-coloring or MIS, regardless of the number of rounds. We also show that Ω(n) is a lower bound on the number ofmessages for any (△ + 1)-coloring or MIS algorithm, even non-comparison-based, and even with nodes having initial knowledge of up to a constant radius. Upper bounds: In the KT-1 CONGEST model, we present the following randomized non-comparison-based algorithms for coloring that, with high probability, use o(m) messages and run in polynomially many rounds.(a) A (△ + 1)-coloring algorithm that uses Õ(n1.5) messages, while running in Õ(D + √ n) rounds, where D is the graph diameter. Our result also implies an asynchronous algorithm for (△ + 1)-coloring with the same message bound but running in Õ(n) rounds. (b) For any constantε > 0, a (1+ε)△-coloring algorithm that uses Õ(n/ε 2 ) messages, while running in Õ(n) rounds. If we increase our input knowledge slightly to radius 2, i.e.,in the KT-2 CONGEST model, we obtain:(c) A randomized comparison-based MIS algorithm that uses Õ(n 1.5) messages. while running in Õ( √n) rounds. While our lower bound results can be viewed as counterparts to the classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM 90], but for local problems, our algorithms are the first-known algorithms for coloring and MIS that take o(m) messages and run in polynomially many rounds. 
    more » « less
  5. We present a deterministic fully dynamic algorithm with subpolynomial worst-case time per graph update such that after processing each update of the graph, the algorithm outputs a minimum cut of the graph if the graph has a cut of size at most $$c$$ for some $$c = (\log n)^{o(1)}$$. Previously, the best update time was $$\widetilde O(\sqrt{n})$$ for any $c > 2$ and $$c = O(\log n)$$. 
    more » « less