Healthy aging is associated with reduced corticospinal drive to leg muscles during walking. Older adults also exhibit slower or reduced gait adaptation compared to young adults. The objective of this study was to determine age-related changes in the contribution of corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), medial, and lateral gastrocnemius (MGAS, LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they adapted walking on a split-belt treadmill. We quantified EMG-EMG coherence in the beta-gamma (15–45 Hz) and alpha-band (8–15 Hz) frequencies. Young adults demonstrated higher coherence in both the beta-gamma band coherence and alpha band coherence, although effect sizes were greater in the beta-gamma frequency. The results showed that slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early adaptation in double support time. In contrast, early adaptation in step length symmetry was predicted by age group alone. These findings suggest an important role of corticospinal drive in adapting interlimb timing during walking in both young and older adults.
more »
« less
Task-dependent alteration of beta-band intermuscular coherence is associated with ipsilateral corticospinal tract excitability
Beta-band (15–30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the “unengaged” corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15–30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the “unengaged” corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.
more »
« less
- Award ID(s):
- 2113096
- PAR ID:
- 10565893
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Sports and Active Living
- Volume:
- 5
- ISSN:
- 2624-9367
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human-exoskeleton misalignment could lead to permanent damages upon the targeted limb with long-term use in rehabilitation. Hence, achieving proper alignment is necessary to ensure patient safety and an effective rehabilitative journey. In this study, a joint-based and task-based exoskeleton for upper limb rehabilitation were modeled and assessed. The assessment examined and quantified the misalignment present at the elbow joint as well as its effects on the main flexor and extensor muscles’ tendon length during elbow flexion-extension. The effects of the misalignments found for both exoskeletons resulted to be minimal in most muscles observed, except the anconeus and brachialis. The anconeus muscle demonstrated a relatively higher variation in tendon length with the joint-based exoskeleton misalignment, indicating that the task-based exoskeleton is favored for tasks that involve this particular muscle. Moreover, the brachialis demonstrated a significantly higher variation with the task-based exoskeleton misalignment, indicating that the joint-based exoskeleton is favored for tasks that involve the muscle.more » « less
-
Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. EMG was recorded from eight hand-forearm muscles in nine healthy individuals. Modularity was defined using non-negative matrix factorization to identify low rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies as a set, and individually, revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both datasets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest a cortical role in combining corticospinal connectivity to individual intrinsic hand muscles with modular mulit-muscle activation via synergies.more » « less
-
Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies.more » « less
-
Tigrini, Andrea (Ed.)Hand gesture classification is crucial for the control of many modern technologies, ranging from virtual and augmented reality systems to assistive mechatronic devices. A prominent control technique employs surface electromyography (EMG) and pattern recognition algorithms to identify specific patterns in muscle electrical activity and translate these to device commands. While being well established in consumer, clinical, and research applications, this technique suffers from misclassification errors caused by limb movements and the weight of manipulated objects, both vital aspects of how we use our hands in daily life. An emerging alternative control technique is force myography (FMG) which uses pattern recognition algorithms to predict hand gestures from the axial forces present at the skin’s surface created by contractions of the underlying muscles. As EMG and FMG capture different physiological signals associated with muscle contraction, we hypothesized that each may offer unique additional information for gesture classification, potentially improving classification accuracy in the presence of limb position and object loading effects. Thus, we tested the effect of limb position and grasped load on 3 different sensing modalities: EMG, FMG, and the fused combination of the two. 27 able-bodied participants performed a grasp and release task with 4 hand gestures at 8 positions and under 5 object weight conditions. We then examined the effects of limb position and grasped load on gesture classification accuracy across each sensing modality. It was found that position and grasped load had statistically significant effects on the classification performance of the 3 sensing modalities and that the combination of EMG and FMG provided the highest classification accuracy of hand gesture, limb position, and grasped load combinations (97.34%) followed by FMG (92.27%) and then EMG (82.84%). This points to the fact that the addition of FMG to traditional EMG control systems offers unique additional data for more effective device control and can help accommodate different limb positions and grasped object loads.more » « less
An official website of the United States government

