Abstract Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus affecting the joint’s torque production. Understanding how muscles generate forces is a key element to injury detection. Researchers have developed several computational methods to obtain muscle forces and joint torques. Electromyography (EMG) driven modeling is one of the approaches to estimate muscle forces and obtain joint torques from muscle activity measurements. Musculoskeletal models and EMG-driven models require necessary muscle-specific parameters for the calculation. The focus of this study is to investigate the EMG-driven approach along with an upper extremity musculoskeletal model to determine muscle forces of two major muscle groups, biceps brachii and triceps brachii, consisting of seven muscle-tendon units. Estimated muscle forces are used to determine the elbow joint torque. Experimental EMG signals and motion capture data are collected for a healthy subject. The musculoskeletal model is scaled to match the geometric parameters of the subject. Then, the approach calculates muscle forces and joint moment for two tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net joint torques for both tasks are estimated. The study also has compared the effect of muscle-tendon parameters (optimal fiber length and tendon slack length) on the estimated results.
more »
« less
Modeling of Human-Exoskeleton Alignment and Its Effect on the Elbow Flexor and Extensor Muscles during Rehabilitation
Human-exoskeleton misalignment could lead to permanent damages upon the targeted limb with long-term use in rehabilitation. Hence, achieving proper alignment is necessary to ensure patient safety and an effective rehabilitative journey. In this study, a joint-based and task-based exoskeleton for upper limb rehabilitation were modeled and assessed. The assessment examined and quantified the misalignment present at the elbow joint as well as its effects on the main flexor and extensor muscles’ tendon length during elbow flexion-extension. The effects of the misalignments found for both exoskeletons resulted to be minimal in most muscles observed, except the anconeus and brachialis. The anconeus muscle demonstrated a relatively higher variation in tendon length with the joint-based exoskeleton misalignment, indicating that the task-based exoskeleton is favored for tasks that involve this particular muscle. Moreover, the brachialis demonstrated a significantly higher variation with the task-based exoskeleton misalignment, indicating that the joint-based exoskeleton is favored for tasks that involve the muscle.
more »
« less
- Award ID(s):
- 1915872
- PAR ID:
- 10467230
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Modelling
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2673-3951
- Page Range / eLocation ID:
- 351 to 365
- Subject(s) / Keyword(s):
- Rehabilitation exoskeleton alignment OpenSim biomechanical
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques. Surface electrodes can measure activations of superficial muscles, but fine-wire electrodes are needed for deep muscles, although it is invasive and require skilled personnel and preparation time. EMG-driven modeling with surface electrodes alone could underestimate the net torque. In this research, authors propose a methodology to predict muscle activations from deeper muscles of the upper extremity. This method finds missing muscle activation one at a time by combining an EMG-driven musculoskeletal model and muscle synergies. This method tracks inverse dynamics joint moments to determine synergy vector weights and predict muscle activation of selected shoulder and elbow muscles of a healthy subject. In addition, muscle-tendon parameter values (optimal fiber length, tendon slack length, and maximum isometric force) have been personalized to the experimental subject. The methodology is tested for a wide range of rehabilitation tasks of the upper extremity across multiple healthy subjects. Results show this methodology can determine single unmeasured muscle activation up to Pearson's correlation coefficient (R) of 0.99 (root mean squared error, RMSE = 0.001) and 0.92 (RMSE = 0.13) for the elbow and shoulder muscles, respectively, for one degree-of-freedom (DoF) tasks. For more complicated five DoF tasks, activation prediction accuracy can reach up to R = 0.71 (RMSE = 0.29).more » « less
-
null (Ed.)In this study, a methodology for designing a task-based exoskeleton which can recreate the end-effector trajectory of a given limb during a rehabilitation task/movement is presented. The exoskeleton provides an option to replace traditional joint-based exoskeleton joints, which often have alignment issues with the biological joint. The proper fit of the exoskeleton to the user and task are research topics to reduce pain or joint injuries as well as for the execution of the task. The proposed task-based synthesis method was successfully applied to generate the 3D motions of the elbow flexion and extensions using a one degree of freedom (DOF), spatial four-bar mechanism. The elbow joint is analyzed through motion capture system to develop the bio-exoskeleton. The resulted exoskeleton does not need to align with the corresponding limb joint to generate the desired anatomical motion.more » « less
-
Exoskeletons and robots have been used as a common practice to assist and automate rehabilitation exercises. Exoskeleton fitting and alignments are important factors and challenges that need to be addressed for smooth and safe operations and better outcomes. Such challenges often dictate the exoskeleton design approaches. Some focus on simplifying and mimicking human joints (joint-based) while others have a focus on a specific task (task-based), which does not need to align with the corresponding limb joint/s to generate the desired anatomical motion. In this study, the two design approaches are assessed in an elbow flexion-extension task. The muscle responses have been collected and compared with and without the exoskeletons. Based on 6 with no disability participants, the normalized Electromyography (EMG) RMS values are plotted. The plot profiles and magnitudes are used as a base to assess the exoskeleton alignment. For this specific task, the task-based exoskeleton has shown a profile closer to the one without exoskeleton with a relatively identical support as the joint-based one; the latter is evidenced through most subjects’ muscle response magnitudes. This preliminary data has shown a good methodology and insight towards the assessment of exoskeletons, but more human subject data is needed with different task combinations to further strengthen the findings.more » « less
-
Beta-band (15–30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the “unengaged” corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15–30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the “unengaged” corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.more » « less