Abstract We develop a Bayesian model–based approach to finite population estimation accounting for spatial dependence. Our innovation here is a framework that achieves inference for finite population quantities in spatial process settings. A key distinction from the small area estimation setting is that we analyze finite populations referenced by their geographic coordinates. Specifically, we consider a two‐stage sampling design in which the primary units are geographic regions, the secondary units are point‐referenced locations, and the measured values are assumed to be a partial realization of a spatial process. Estimation of finite population quantities from geostatistical models does not account for sampling designs, which can impair inferential performance, whereas design‐based estimates ignore the spatial dependence in the finite population. We demonstrate by using simulation experiments that process‐based finite population sampling models improve model fit and inference over models that fail to account for spatial correlation. Furthermore, the process‐based models offer richer inference with spatially interpolated maps over the entire region. We reinforce these improvements and demonstrate scalable inference for groundwater nitrate levels in the population of California Central Valley wells by offering estimates of mean nitrate levels and their spatially interpolated maps.
more »
« less
Distributed model building and recursive integration for big spatial data modeling
ABSTRACT Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework’s backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain. Statistical and computational properties of our distributed approach are investigated theoretically and in simulations. The proposed approach is used to extract new insights into autism spectrum disorder from the autism brain imaging data exchange.
more »
« less
- Award ID(s):
- 2152887
- PAR ID:
- 10565917
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 81
- Issue:
- 1
- ISSN:
- 0006-341X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A key challenge in spatial data science is the analysis for massive spatially‐referenced data sets. Such analyses often proceed from Gaussian process specifications that can produce rich and robust inference, but involve dense covariance matrices that lack computationally exploitable structures. Recent developments in spatial statistics offer a variety of massively scalable approaches. Bayesian inference and hierarchical models, in particular, have gained popularity due to their richness and flexibility in accommodating spatial processes. Our current contribution is to provide computationally efficient exact algorithms for spatial interpolation of massive data sets using scalable spatial processes. We combine low‐rank Gaussian processes with efficient sparse approximations. Following recent work by Zhang et al. (2019), we model the low‐rank process using a Gaussian predictive process (GPP) and the residual process as a sparsity‐inducing nearest‐neighbor Gaussian process (NNGP). A key contribution here is to implement these models using exact conjugate Bayesian modeling to avoid expensive iterative algorithms. Through the simulation studies, we evaluate performance of the proposed approach and the robustness of our models, especially for long range prediction. We implement our approaches for remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska.more » « less
-
Abstract Functional data are often extremely high-dimensional and exhibit strong dependence structures but can often prove valuable for both prediction and inference. The literature on functional data analysis is well developed; however, there has been very little work involving functional data in complex survey settings. Motivated by physical activity monitor data from the National Health and Nutrition Examination Survey (NHANES), we develop a Bayesian model for functional covariates that can properly account for the survey design. Our approach is intended for non-Gaussian data and can be applied in multivariate settings. In addition, we make use of a variety of Bayesian modeling techniques to ensure that the model is fit in a computationally efficient manner. We illustrate the value of our approach through two simulation studies as well as an example of mortality estimation using NHANES data.more » « less
-
Abstract Joint modeling of spatially oriented dependent variables is commonplace in the environmental sciences, where scientists seek to estimate the relationships among a set of environmental outcomes accounting for dependence among these outcomes and the spatial dependence for each outcome. Such modeling is now sought for massive data sets with variables measured at a very large number of locations. Bayesian inference, while attractive for accommodating uncertainties through hierarchical structures, can become computationally onerous for modeling massive spatial data sets because of its reliance on iterative estimation algorithms. This article develops a conjugate Bayesian framework for analyzing multivariate spatial data using analytically tractable posterior distributions that obviate iterative algorithms. We discuss differences between modeling the multivariate response itself as a spatial process and that of modeling a latent process in a hierarchical model. We illustrate the computational and inferential benefits of these models using simulation studies and analysis of a vegetation index data set with spatially dependent observations numbering in the millions.more » « less
-
We propose a new estimation procedure for general spatio-temporal point processes that include a self-exciting feature. Estimating spatio-temporal self-exciting point processes with observed data is challenging, partly because of the difficulty in computing and optimizing the likelihood function. To circumvent this challenge, we employ a Poisson cluster representation for spatio-temporal self-exciting point processes to simplify the likelihood function and develop a new estimation procedure called “clustering-then-estimation” (CTE), which integrates clustering algorithms with likelihood-based estimation methods. Compared with the widely used expectation-maximization (EM) method, our approach separates the cluster structure inference of the data from the model selection. This has the benefit of reducing the risk of model misspecification. Our approach is computationally more efficient because it does not need to recursively solve optimization problems, which would be needed for EM. We also present asymptotic statistical results for our approach as theoretical support. Experimental results on several synthetic and real data sets illustrate the effectiveness of the proposed CTE procedure.more » « less
An official website of the United States government
