skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron Heating in the Transrelativistic Perpendicular Shocks of Tilted Accretion Flows
Abstract General relativistic magnetohydrodynamic (GRMHD) simulations of black hole tilted disks—where the angular momentum of the accretion flow at large distances is misaligned with respect to the black hole spin—commonly display standing shocks within a few to tens of gravitational radii from the black hole. In GRMHD simulations of geometrically thick, optically thin accretion flows, applicable to low-luminosity sources like Sgr A* and M87*, the shocks have transrelativistic speed, moderate plasma beta (the ratio of ion thermal pressure to magnetic pressure isβpi1∼ 1–8), and low sonic Mach number (the ratio of shock speed to sound speed isMs∼ 1–6). We study such shocks with 2D particle-in-cell simulations, and we quantify the efficiency and mechanisms of electron heating for the special case of preshock magnetic fields perpendicular to the shock direction of propagation. We find that the postshock electron temperatureTe2exceeds the adiabatic expectationTe2,adby an amount T e 2 / T e 2 , ad 1 0.0016 M s 3.6 , nearly independent of the plasma beta and of the preshock electron-to-ion temperature ratioTe1/Ti1, which we vary from 0.1 to unity. We investigate the heating physics forMs∼ 5–6 and find that electron superadiabatic heating is governed by magnetic pumping atTe1/Ti1= 1, whereas heating byB-parallel electric fields (i.e., parallel to the local magnetic field) dominates atTe1/Ti1= 0.1. Our results provide physically motivated subgrid prescriptions for electron heating at the collisionless shocks seen in GRMHD simulations of black hole accretion flows.  more » « less
Award ID(s):
2010189
PAR ID:
10565920
Author(s) / Creator(s):
;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
968
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In magnetic reconnection, the ion bulk outflow speed and ion heating have been shown to be set by the available reconnecting magnetic energy, i.e., the energy stored in the reconnecting magnetic field (Br). However, recent simulations, observations, and theoretical works have shown that the released magnetic energy is inhibited by upstream ion plasma betaβi—the relative ion thermal pressure normalized to magnetic pressure based on the reconnecting field—for antiparallel magnetic field configurations. Using kinetic theory and hybrid particle-in-cell simulations, we investigate the effects ofβion guide field reconnection. While previous works have suggested that guide field reconnection is uninfluenced byβi, we demonstrate that the reconnection process is modified and the outflow is reduced for sufficiently large β i > ( B r 2 + B g 2 ) / B r 2 . We develop a theoretical framework that shows that this reduction is consistent with an enhanced exhaust pressure gradient, which reduces the outflow speed as v out 1 / β i . These results apply to systems in which guide field reconnection is embedded in hot plasmas, such as reconnection at the boundary of eddies in fully developed turbulence like the solar wind or the magnetosheath as well as downstream of shocks such as the heliosheath or the mergers of galaxy clusters. 
    more » « less
  2. Abstract Collapsars—rapidly rotating stellar cores that form black holes—can power gamma-ray bursts and are proposed to be key contributors to the production of heavy elements in the Universe via the rapid neutron capture process (r-process). Previous neutrino-transport collapsar simulations have been unable to unbind neutron-rich material from the disk. However, these simulations have not included sufficiently strong magnetic fields and the black hole (BH), both of which are essential for launching mass outflows. We presentνh-amr, a novel neutrino-transport general relativistic magnetohydrodynamic (νGRMHD) code, which we use to perform the first 3D globalνGRMHD collapsar simulations. We find a self-consistent formation of a weakly magnetized dense accretion disk, which has sufficient time to neutronize. Eventually, substantial magnetic flux accumulates near the BH, becomes dynamically important, leads to a magnetically arrested disk (MAD), and unbinds some of the neutron-rich material. However, the strong flux also hinders accretion, lowers density, and increases neutrino-cooling timescale, which prevents further disk neutronization. Typical collapsar progenitors with mass accretion rates, M ̇ 0.1 1 M s - 1 , do not produce significant neutron-rich (Ye < 0.25) ejecta. However, we find that MADs at higher mass accretion rates, M ̇ few M s - 1 (e.g., for more centrally concentrated progenitors), can unbindMej ≲ Mof neutron-rich ejecta. The outflows inflate a shocked cocoon that mixes with the infalling neutron-poor stellar gas and raises the final outflowYe; however, the finalr-process yield may be determined earlier at the point of neutron capture freeze-out. Future work will explore under what conditions more typical collapsar engines becomer-process factories. 
    more » « less
  3. Abstract We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of Δ t AB = 55.1 3.7 + 4.0 days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk atλrest= 2420 Å, finding a half-light radius of log(r1/2/cm) = 16.19 0.58 + 0.38 assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mgiiline in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, findingMBH= 2.47 × 109M. We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of theMBHscale, is fully consistent with the existing quasar accretion disk size–black hole mass relation. 
    more » « less
  4. Abstract We have surveyed 21 reconnection exhaust events observed by Magnetospheric MultiScale in the low-plasma-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of electron bulk heating produced by reconnection. The ranges of inflow Alfvén speed and inflow electronβecovered by this study are 800–4000 km s−1and 0.001–0.1, respectively, and the observed heating ranges from a few hundred electronvolts to several kiloelectronvolts. We find that the temperature change in the reconnection exhaust relative to the inflow, ΔTe, is correlated with the inflow Alfvén speed,VAx,in, based on the reconnecting magnetic field and the inflow plasma density. Furthermore, ΔTeis linearly proportional to the inflowing magnetic energy per particle, m i V Ax , in 2 , and the best fit to the data produces the empirical relation ΔTe= 0.020 m i V Ax , in 2 , i.e., the electron temperature increase is on average ∼2% of the inflowing magnetic energy per particle. This magnetotail study extends a previous magnetopause reconnection study by two orders of magnitude in both magnetic energy and electronβ, to a regime that is comparable to the solar corona. The validity of the empirical relation over such a large combined magnetopause–magnetotail plasma parameter range ofVA∼ 10–4000 km s−1andβe∼ 0.001–10 suggests that one can predict the magnitude of the bulk electron heating by reconnection in a variety of contexts from the simple knowledge of a single parameter: the Alfvén speed of the ambient plasma. 
    more » « less
  5. Abstract We present a survey of 1D kinetic particle-in-cell simulations of quasi-parallel nonrelativistic shocks to identify the environments favorable for electron acceleration. We explore an unprecedented range of shock speedsvsh≈ 0.067–0.267c, Alfvén Mach numbers M A = 5 40 , sonic Mach numbers M s = 5 160 , as well as the proton-to-electron mass ratiosmi/me= 16–1836. We find that high Alfvén Mach number shocks can channel a large fraction of their kinetic energy into nonthermal particles, self-sustaining magnetic turbulence and acceleration to larger and larger energies. The fraction of injected particles is ≲0.5% for electrons and ≈1% for protons, and the corresponding energy efficiencies are ≲2% and ≈10%, respectively. The extent of the nonthermal tail is sensitive to the Alfvén Mach number; when M A 10 , the nonthermal electron distribution exhibits minimal growth beyond the average momentum of the downstream thermal protons, independently of the proton-to-electron mass ratio. Acceleration is slow for shocks with low sonic Mach numbers, yet nonthermal electrons still achieve momenta exceeding the downstream thermal proton momentum when the shock Alfvén Mach number is large enough. We provide simulation-based parameterizations of the transition from thermal to nonthermal distribution in the downstream (found at a momentum around p i , e / m i v sh 3 m i , e / m i ), as well as the ratio of nonthermal electron to proton number density. The results are applicable to many different environments and are important for modeling shock-powered nonthermal radiation. 
    more » « less