skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near-Optimal Reinforcement Learning with Self-Play under Adaptivity Constraints
We study the problem of multi-agent reinforcement learning (MARL) with adaptivity constraints -- a new problem motivated by real-world applications where deployments of new policies are costly and the number of policy updates must be minimized. For two-player zero-sum Markov Games, we design a (policy) elimination based algorithm that achieves a regret of O˜(H3S2ABK‾‾‾‾‾‾‾‾‾‾√), while the batch complexity is only O(H+loglogK). In the above, S denotes the number of states, A,B are the number of actions for the two players respectively, H is the horizon and K is the number of episodes. Furthermore, we prove a batch complexity lower bound Ω(HlogAK+loglogK) for all algorithms with O˜(K‾‾√) regret bound, which matches our upper bound up to logarithmic factors. As a byproduct, our techniques naturally extend to learning bandit games and reward-free MARL within near optimal batch complexity. To the best of our knowledge, these are the first line of results towards understanding MARL with low adaptivity.  more » « less
Award ID(s):
2007117
PAR ID:
10565978
Author(s) / Creator(s):
;
Publisher / Repository:
ICML 2024
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy, respectively, which are flexible in design and easy to implement in practice. For a special class of parallel MDPs where the transition is (approximately) linear, we theoretically prove that both CoopTS-PHE and CoopTS-LMC achieve a $$\widetilde{\mathcal{O}}(d^{3/2}H^2\sqrt{MK})$$ regret bound with communication complexity $$\widetilde{\mathcal{O}}(dHM^2)$$, where $$d$$ is the feature dimension, $$H$$ is the horizon length, $$M$$ is the number of agents, and $$K$$ is the number of episodes. This is the first theoretical result for randomized exploration in cooperative MARL. We evaluate our proposed method on multiple parallel RL environments, including a deep exploration problem (i.e., $$N$$-chain), a video game, and a real-world problem in energy systems. Our experimental results support that our framework can achieve better performance, even under conditions of misspecified transition models. Additionally, we establish a connection between our unified framework and the practical application of federated learning. 
    more » « less
  2. We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy, respectively, which are flexible in design and easy to implement in practice. For a special class of parallel MDPs where the transition is (approximately) linear, we theoretically prove that both CoopTS-PHE and CoopTS-LMC achieve a $$\widetilde{\mathcal{O}}(d^{3/2}H^2\sqrt{MK})$$ regret bound with communication complexity $$\widetilde{\mathcal{O}}(dHM^2)$$, where $$d$$ is the feature dimension, $$H$$ is the horizon length, $$M$$ is the number of agents, and $$K$$ is the number of episodes. This is the first theoretical result for randomized exploration in cooperative MARL. We evaluate our proposed method on multiple parallel RL environments, including a deep exploration problem (i.e., $$N$$-chain), a video game, and a real-world problem in energy systems. Our experimental results support that our framework can achieve better performance, even under conditions of misspecified transition models. Additionally, we establish a connection between our unified framework and the practical application of federated learning. 
    more » « less
  3. We take initial steps in studying PAC-MDP algorithms with limited adaptivity, that is, algorithms that change its exploration policy as infrequently as possible during regret minimization. This is motivated by the difficulty of running fully adaptive algorithms in real-world applications (such as medical domains), and we propose to quantify adaptivity using the notion of local switching cost. Our main contribution, Q-Learning with UCB2 exploration, is a model-free algorithm for H-step episodic MDP that achieves sublinear regret whose local switching cost in K episodes is O(H3SA log K), and we provide a lower bound of Ω(HSA) on the local switching cost for any no-regret algorithm. Our algorithm can be naturally adapted to the concurrent setting [13], which yields nontrivial results that improve upon prior work in certain aspects. 
    more » « less
  4. Chaudhuri, Kamalika and (Ed.)
    We study the problem of reinforcement learning (RL) with low (policy) switching cost {—} a problem well-motivated by real-life RL applications in which deployments of new policies are costly and the number of policy updates must be low. In this paper, we propose a new algorithm based on stage-wise exploration and adaptive policy elimination that achieves a regret of $$\widetilde{O}(\sqrt{H^4S^2AT})$$ while requiring a switching cost of $$O(HSA \log\log T)$$. This is an exponential improvement over the best-known switching cost $$O(H^2SA\log T)$$ among existing methods with $$\widetilde{O}(\mathrm{poly}(H,S,A)\sqrt{T})$$ regret. In the above, $S,A$ denotes the number of states and actions in an $$H$$-horizon episodic Markov Decision Process model with unknown transitions, and $$T$$ is the number of steps. As a byproduct of our new techniques, we also derive a reward-free exploration algorithm with a switching cost of $O(HSA)$. Furthermore, we prove a pair of information-theoretical lower bounds which say that (1) Any no-regret algorithm must have a switching cost of $$\Omega(HSA)$$; (2) Any $$\widetilde{O}(\sqrt{T})$$ regret algorithm must incur a switching cost of $$\Omega(HSA\log\log T)$$. Both our algorithms are thus optimal in their switching costs. 
    more » « less
  5. We develop a novel and generic algorithm for the adversarial multi-armed bandit problem (or more generally the combinatorial semi-bandit problem). When instantiated differently, our algorithm achieves various new data-dependent regret bounds improving previous work. Examples include: 1) a regret bound depending on the variance of only the best arm; 2) a regret bound depending on the first-order path-length of only the best arm; 3) a regret bound depending on the sum of the first-order path-lengths of all arms as well as an important negative term, which together lead to faster convergence rates for some normal form games with partial feedback; 4) a regret bound that simultaneously implies small regret when the best arm has small loss {\it and} logarithmic regret when there exists an arm whose expected loss is always smaller than those of other arms by a fixed gap (e.g. the classic i.i.d. setting). In some cases, such as the last two results, our algorithm is completely parameter-free. The main idea of our algorithm is to apply the optimism and adaptivity techniques to the well-known Online Mirror Descent framework with a special log-barrier regularizer. The challenges are to come up with appropriate optimistic predictions and correction terms in this framework. Some of our results also crucially rely on using a sophisticated increasing learning rate schedule. 
    more » « less