Abstract Key MessageTheC. roseus ZCTsare jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. AbstractCatharanthus roseusis the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known asZinc fingerCatharanthusTranscription factors (ZCTs).We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression ofZCTsin seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). TheZCTsdiffered in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except forZCT5). We showed significant activation of thepZCT1andpZCT3promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of theZCTscan be mediated by CrMYC2a. In summary, theC. roseus ZCTsare jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.
more »
« less
Metabolomics analysis reveals both plant variety and choice of hormone treatment modulate vinca alkaloid production in Catharanthus roseus
Abstract The medicinal plantCatharanthus roseusproduces numerous secondary metabolites of interest for the treatment of many diseases – most notably for the terpene indole alkaloid (TIA) vinblastine, which is used in the treatment of leukemia and Hodgkin's lymphoma. Historically, methyl jasmonate (MeJA) has been used to induce TIA production, but in the past, this has only been investigated in whole seedlings, cell culture, or hairy root culture. This study examines the effects of the phytohormones MeJA and ethylene on the induction of TIA biosynthesis and accumulation in the shoots and roots of 8‐day‐old seedlings of two varieties ofC. roseus. Using LCMS and RT‐qPCR, we demonstrate the importance of variety selection, as we observe markedly different induction patterns of important TIA precursor compounds. Additionally, both phytohormone choice and concentration have significant effects on TIA biosynthesis. Finally, our study suggests that several early‐induction pathway steps as well as pathway‐specific genes are likely to be transcriptionally regulated. Our findings highlight the need for a complete set of'omics resources in commonly usedC. roseusvarieties and the need for caution when extrapolating results from one cultivar to another.
more »
« less
- Award ID(s):
- 1750698
- PAR ID:
- 10565980
- Publisher / Repository:
- PubMed Central
- Date Published:
- Journal Name:
- Plant Direct
- Volume:
- 4
- Issue:
- 9
- ISSN:
- 2475-4455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway ofCatharanthus roseus(Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, theC. roseusMIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell‐type specificity of MIA biosynthesis is achieved is poorly understood.We generated single‐cell multi‐omics data fromC. roseusleaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)‐binding site profiles, we constructed a cell‐type‐aware gene regulatory network for MIA biosynthesis.We showcased cell‐type‐specific TFs as well as cell‐type‐specificcis‐regulatory elements. Using motif enrichment analysis, co‐expression across cell types, and functional validation approaches, we discovered a novel idioblast‐specific TF (Idioblast MYB1,CrIDM1) that activates expression of late‐stage MIA biosynthetic genes in the idioblast.These analyses not only led to the discovery of the first documented cell‐type‐specific TF that regulates the expression of two idioblast‐specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell‐type‐specific metabolic regulation.more » « less
-
Lipoxygenase (LOX) is associated with responses to plant hormones, environmental stresses, and signaling substances. Methyl jasmonate (MeJA) treatment triggers the production of LOX, polyphenol oxidase, and protease inhibitors in various plants, producing resistance to herbivory. To examine the response of MtLOX24 to MeJA, the phenotypic and physiological changes in Medicago truncatula MtLOX24 overexpression and lox mutant plants were investigated. Additionally, wild-type R108, the MtLOX24-overexpressing line L4, and the mutant lox-1 were utilized as experimental materials to characterize the differentially expressed genes (DEGs) and metabolic pathways in response to MeJA. The results indicate that after treatment with 200 µM of MeJA, the damage in the mutants lox-1 and lox-2 was more serious than in the overexpressing lines L4 and L6, with more significant leaf wilting, yellowing, and oxidative damage in lox-1 and lox-2. Exogenous application of MeJA induced H2O2 production and POD activity but reduced CAT activity in the lox mutants. Transcriptome analysis revealed 10,238 DEGs in six libraries of normal-growing groups (cR108, cL4, and clox1) and MeJA-treated groups (R108, L4, and lox1). GO and KEGG functional enrichment analysis demonstrated that under normal growth conditions, the DEGs between the cL4 vs. cR108 and the clox-1 vs. cR108 groups were primarily enriched in signaling pathways such as plant–pathogen interactions, flavonoid biosynthesis, plant hormone signal transduction, the MAPK signaling pathway, and glutathione metabolism. The DEGs of the R108 vs. cR108 and L4 vs. cL4 groups after MeJA treatment were mainly enriched in glutathione metabolism, phenylpropanoid biosynthesis, the MAPK signaling pathway, circadian rhythm, and α-linolenic acid metabolism. Among them, under normal growth conditions, genes like PTI5, PR1, HSPs, PALs, CAD, CCoAOMT, and CYPs showed significant differences between L4 and the wild type, suggesting that the expression of these genes is impacted by MtLOX24 overexpression. CDPKs, CaMCMLs, IFS, JAZ, and other genes were also significantly different between L4 and the wild type upon MeJA treatment, suggesting that they might be important genes involved in JA signaling. This study provides a reference for the study of the response mechanism of MtLOX24 under MeJA signaling.more » « less
-
Abstract Agrobacterium‐mediated transient expression methods are widely used to study gene function in both model and non‐model plants. Using a dual‐luciferase assay, we quantified the effect ofAgrobacterium‐infiltration parameters on the transient transformation efficiency ofCatharanthus roseusseedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre‐ and post‐infiltration dark incubation and is less sensitive to theAgrobacteriumgrowth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven‐ to eight‐fold while a dark incubation pre‐ and post‐infiltration increased transformation efficiency by five‐ to 13‐fold.Agrobacteriumin exponential compared with stationary phase increased transformation efficiency by two‐fold. Finally, we quantified the variation in ourAgrobacterium‐infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6‐fold in raw firefly luciferase (FLUC) and rawRenillaluciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation ofAgrobacteriuminfiltration inC. roseusseedlings will facilitate the study of this important medicinal plant and will expand the application ofAgrobacterium‐mediated transformation methods in other plant species.more » « less
-
Abstract Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and threeEscherichia colistrains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicatedE. colistrain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L−1acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.more » « less
An official website of the United States government

