Abstract In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are tooredcompared to observations. Including ocean processes in the model reduces this discrepancy bywhiteningthe midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability. 
                        more » 
                        « less   
                    
                            
                            Eastern Boundary Upwelling Systems in Ocean–Sea Ice Simulations Forced by CORE and JRA55-do: Mean State and Variability at the Surface
                        
                    
    
            Abstract In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2231237
- PAR ID:
- 10566091
- Publisher / Repository:
- American Meteorological Society (AMS)
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 37
- Issue:
- 9
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 2821 to 2848
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Global increases in temperature are altering land-sea temperature gradients. Bakun (1990) hypothesized that changes within these gradients will directly affect atmospheric pressure cells associated with the development of winds and will consequently impact upwelling patterns within ecologically important Eastern Boundary Upwelling Systems (EBUS). In this study we used daily time series of NOAA Optimally Interpolated sea surface temperature (SST) and ERA 5 reanalysis wind products to calculate a series novel of metrics related to upwelling dynamics. We then use these to objectively describe upwelling signals in terms of their frequency, intensity and duration throughout the four EBUS during summer months over the last 37 years (1982–2019). We found that a decrease (increase) in SST is associated with an increase (decrease) in the number of upwelling “events,” a decrease (increase) in the intensity of upwelling, and an increase (decrease) in the cumulative intensity of upwelling, with differences between EBUS and regions within EBUS. The Humboldt Current is the only EBUS that shows a consistent response from north to south with a general intensification of upwelling. However, we could not provide clear evidence for associated changes in the wind dynamics hypothesized to drive the upwelling dynamics.more » « less
- 
            Abstract The strong sea‐surface temperature (SST) gradient associated with the Gulf Stream (GS) is widely acknowledged to play an important role in shaping mid‐latitude weather and climate. Despite this, an index for the GS SST gradient has not yet been standardized in the literature. This paper introduces a monthly index for the large‐scale SST gradient across the separated GS based on the time‐varying GS position detected from sea‐surface height. Analysis suggests that the variations in the monthly average SST gradient throughout the year result primarily from SST variability to the north of the GS, with little contribution from SST to the south. The index exhibits a weak periodicity at ∼2 years. Sea level pressure and turbulent heat flux patterns suggest that variability in the large‐scale SST gradient is related to atmospheric (rather than oceanic) forcing. Ocean‐to‐atmosphere feedback does not persist throughout the year, but there is some evidence of wintertime feedback.more » « less
- 
            Abstract Southern Ocean surface cooling and Antarctic sea ice expansion from 1979 through 2015 have been linked both to changing atmospheric circulation and melting of Antarctica's grounded ice and ice shelves. However, climate models have largely been unable to reproduce this behavior. Here we examine the contribution of observed wind variability and Antarctic meltwater to Southern Ocean sea surface temperature (SST) and Antarctic sea ice. The free‐running, CMIP6‐class GISS‐E2.1‐G climate model can simulate regional cooling and neutral sea ice trends due to internal variability, but they are unlikely. Constraining the model to observed winds and meltwater fluxes from 1990 through 2021 gives SST variability and trends consistent with observations. Meltwater and winds contribute a similar amount to the SST trend, and winds contribute more to the sea ice trend than meltwater. However, while the constrained model captures much of the observed sea ice variability, it only partially captures the post‐2015 sea ice reduction.more » « less
- 
            Abstract The dynamics of ocean‐estuary exchange depend on a variety of local and remote ocean forcing mechanisms where local mechanisms include those directly forcing the estuary such as tides, river discharge, and local wind stress; remote forcing includes forcing from the ocean such as coastal wind stress and coastal stratification variability. We use a numerical model to investigate the limits of oceanic influence, such as wind‐driven upwelling, on the Salish Sea exchange flow and salt transport. We find that along‐shelf winds substantially modulate flow throughout the Strait of Juan de Fuca until flow reaches sill‐influenced constrictions. At these constrictions the exchange flow variability becomes sensitive to local tidal and river forcing. The salt exchange variability is tidally dominated at Admiralty Inlet and upwelling has little impact on seasonal salt exchange variability. While within Haro Strait, the salt exchange variability is driven by a mix of coastal upwelling and local forcing including river discharge. There, the transition from oceanic to local control of salt exchange occurs over a longer distance and is primarily identifiable in the increasing variability of bulk outflowing salinity values. The differences between the two locations highlight how ocean variability interacts with both tidal pumping and gravitational circulation. We also distinguish between transient ocean forcing which can modify fjord properties near the mouth of the strait and seasonal ocean forcing which primarily affects along‐strait pressure gradients. The results have implications for understanding the transport variability of biogeochemical variables that are influenced by both along‐shelf winds and local sources.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    