Abstract Magnetic clouds (MCs) are most often fitted with flux rope models that are static and have symmetric magnetic field profiles. However, spacecraft measurements near 1 au show that MCs usually expand when propagating away from the Sun and that their magnetic field profiles are asymmetric. Both effects are expected to be related, since expansion has been shown to result in a shift of the peak of the magnetic field toward the front of the MC. In this study, we investigate the effects of expansion on the asymmetry of the total magnetic field strength profile of MCs. We restrict our study to the simplest events, i.e., those that are crossed close to the nose of the MC. From a list of 25 such “simple” events, we compare the fitting results of a specific expanding Lundquist model with those of a classical force-free circular cross-sectional static Lundquist model. We quantify the goodness of the fits by the χ 2 of the total magnetic field and identify three types of MCs: (i) those with little expansion, which are well fitted by both models; (ii) those with moderate expansion, which are well fitted by the expanding model, but not by the static model; and (iii) those with expansion, whose asymmetry of the magnetic field cannot be explained. We find that the assumption of self-similar expansion cannot explain the measured asymmetry in the magnetic field profiles of some of these magnetic ejecta (MEs). We discuss our results in terms of our understanding of the magnetic fields of the MEs and their evolution from the Sun to Earth.
more »
« less
Measurements of Magnetic Cloud Expansion through Multiple Spacecraft in Radial Conjunction
Abstract The aim of this study is to use multispacecraft measurements of interplanetary magnetic clouds (MCs) to better constrain and understand the effect of expansion on their magnetic field properties. We develop a parameter (γ) for comparing magnetic field components measured at multiple spacecraft. We use the minimum variance technique on the magnetic field data to obtain the axial and azimuthal components. The parameterγacts at the front boundary as a measure of the global difference in the evolution with heliospheric distance of the axial and azimuthal magnetic field components of MCs. Our goal is to determine whether the studied MCs exhibit self-similar expansion and, if so, whether this expansion is predominantly isotropic or radial, based on the estimatedγ. Through our analysis of data from multiple spacecraft, we observe a notable consistency in theγvalues across the examples examined. We find that the overall expansion of these MCs tends to be isotropic, while the local expansion of MCs, derived from theγvalues measured at the rear boundary of MCs, usually shows anisotropic behavior, particularly when the distances between the observations from the two spacecraft are relatively short. This discovery offers insights for refining flux rope models and advancing our comprehension of the expansion processes associated with coronal mass ejections.
more »
« less
- PAR ID:
- 10566134
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 974
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 289
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There is considerable evidence that current sheet scattering (CSS) plays an important role in isotropic boundary (IB) formation during quiet time. However, IB formation can also result from scattering by electromagnetic ion cyclotron waves, which are much more prevalent during storm time. The effectiveness of CSS can be estimated by the parameter, the ratio of the field line radius of curvature to the particle gyroradius. Using magnetohydrodynamic and empirical models, we estimated the parameterKassociated with storm time IB observations on the nightside. We used magnetic field observations from spacecraft in the magnetotail to estimate and correct for errors in theKvalues computed by the models. We find that the magnetohydrodynamic and empirical models produce fairly similar results without correction and that correction increases this similarity. Accounting for uncertainty in both the latitude of the IB and the threshold value ofKrequired for CSS, we found that 29–54% of the IB observations satisfied the criteria for CSS. We found no correlation between the correctedKand magnetic local time, which further supports the hypothesis that CSS played a significant role in forming the observed IBs.more » « less
-
Abstract The radial evolution of interplanetary coronal mass ejections (ICMEs) is dependent on their interaction with the ambient medium, which causes ICME erosion and affects their geoefficiency. Here, an ICME front boundary, which separates the confined ejecta from the mixed, interacted sheath–ejecta plasma upstream, is analyzed in a multipoint study examining the ICME at 1 au on 2020 April 20. A bifurcated current sheet, highly filamented currents, and a two-sided jet were observed at the boundary. The two-sided jet, which was recorded for the first time for a magnetic shear angle <40°, implies multiple (patchy) reconnection sites associated with the ICME erosion. The reconnection exhaust exhibited fine structure, including multistep magnetic field rotation and localized structures that were measured only by separate Cluster spacecraft with the mission inter-spacecraft separation of 0.4–1.6RE. The mixed plasma upstream of the boundary with a precursor at 0.8 au lacked coherency at 1 au and exhibited substantial variations of southward magnetic fields over radial (transverse) distances of 41–237RE(114RE). This incoherence demonstrates the need for continuous (sub)second-resolution plasma and field measurements at multiple locations in the solar wind to adequately address the spatiotemporal structure of ICMEs and to produce accurate space weather predictions.more » « less
-
null (Ed.)This paper investigates the steady axisymmetric structure of the cold boundary-layer flow surrounding fire whirls developing over localized fuel sources lying on a horizontal surface. The inviscid swirling motion found outside the boundary layer, driven by the entrainment of the buoyant turbulent plume of hot combustion products that develops above the fire, is described by an irrotational solution, obtained by combining Taylor's self-similar solution for the motion in the axial plane with the azimuthal motion induced by a line vortex of circulation $$2 {\rm \pi}\Gamma$$ . The development of the boundary layer from a prescribed radial location is determined by numerical integration for different swirl levels, measured by the value of the radial-to-azimuthal velocity ratio $$\sigma$$ at the initial radial location. As in the case $$\sigma =0$$ , treated in the seminal boundary-layer analysis of Burggraf et al. ( Phys. Fluids , vol. 14, 1971, pp. 1821–1833), the pressure gradient associated with the centripetal acceleration of the inviscid flow is seen to generate a pronounced radial inflow. Specific attention is given to the terminal shape of the boundary-layer velocity near the axis, which displays a three-layered structure that is described by matched asymptotic expansions. The resulting composite expansion, dependent on the level of ambient swirl through the parameter $$\sigma$$ , is employed as boundary condition to describe the deflection of the boundary-layer flow near the axis to form a vertical swirl jet. Numerical solutions of the resulting non-slender collision region for different values of $$\sigma$$ are presented both for inviscid flow and for viscous flow with moderately large values of the controlling Reynolds number $$\Gamma /\nu$$ . The velocity description provided is useful in mathematical formulations of localized fire-whirl flows, providing consistent boundary conditions accounting for the ambient swirl level.more » « less
-
Abstract Simultaneous in situ measurements of coronal mass ejections (CMEs), including both plasma and magnetic field, by two spacecraft in radial alignment have been extremely rare. Here, we report on one such CME measured by Solar Orbiter (SolO) and Wind on 2021 November 3–5, while the spacecraft were radially separated by a heliocentric distance of 0.13 au and angularly by only 2.2°. We focus on the magnetic cloud (MC) part of the CME. We find notable changes in theRandNmagnetic field components and in the speed profiles inside the MC between SolO and Wind. We observe a greater speed at the spacecraft farther away from the Sun without any clear compression signatures. Since the spacecraft are close to each other and computing fast magnetosonic wave speed inside the MC, we rule out temporal evolution as the reason for the observed differences, suggesting that spatial variations over 2.2° of the MC structure are at the heart of the observed discrepancies. Moreover, using shock properties at SolO, we forecast an arrival time 2 hr 30 minutes too late for a shock that is just 5 hr 31 minutes away from Wind. Predicting the north–south component of the magnetic field at Wind from SolO measurements leads to a relative error of 55%. These results show that even angular separations as low as 2.2° (or 0.03 au in arc length) between spacecraft can have a large impact on the observed CME properties, which raises the issue of the resolutions of current CME models, potentially affecting our forecasting capabilities.more » « less
An official website of the United States government

