skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Current Sheet Scattering in the Proton Isotropic Boundary Formation During Geomagnetic Storms
Abstract There is considerable evidence that current sheet scattering (CSS) plays an important role in isotropic boundary (IB) formation during quiet time. However, IB formation can also result from scattering by electromagnetic ion cyclotron waves, which are much more prevalent during storm time. The effectiveness of CSS can be estimated by the parameter, the ratio of the field line radius of curvature to the particle gyroradius. Using magnetohydrodynamic and empirical models, we estimated the parameterKassociated with storm time IB observations on the nightside. We used magnetic field observations from spacecraft in the magnetotail to estimate and correct for errors in theKvalues computed by the models. We find that the magnetohydrodynamic and empirical models produce fairly similar results without correction and that correction increases this similarity. Accounting for uncertainty in both the latitude of the IB and the threshold value ofKrequired for CSS, we found that 29–54% of the IB observations satisfied the criteria for CSS. We found no correlation between the correctedKand magnetic local time, which further supports the hypothesis that CSS played a significant role in forming the observed IBs.  more » « less
Award ID(s):
1663770
PAR ID:
10480339
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
5
ISSN:
2169-9380
Page Range / eLocation ID:
3468 to 3486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent studies have found that even during quiet times, observed proton isotropic boundaries (IBs) are often projected to the region of high adiabaticity parameter (K≈30), whereis the ratio of magnetic field line radius of curvature to the particle gyroradius. This contradicts the accepted hypothesis that current sheet scattering (CSS) is the dominant mechanism of IB formation becauseK≈8 would be expected for this mechanism. We used magnetohydrodynamic simulations and empirical models to computeKfor 30‐keV proton IB observations within 3 hr of local midnight. We found that neither class of model reliably estimatesKunless supported by magnetic field observations in the current sheet. magnetohydrodynamic simulations produced higherKvalues than expected for CSS (K = 15–30), and empirical models gave lower values (K < 4). We obtained reliable estimates ofKby controlling for the accuracy of the normal component and the gradient of the radial component in the neutral sheet, using observations from three Time History of Events and Macroscale Interactions during Substorms satellites. For the first time, we demonstrated that both these variables should be taken into account for the accurate estimation of the curvature radius. This greatly reduced the spread ofKvalues, indicating that much of the previous spread was due to errors in the magnetic field but also that these errors can be controlled. Most of the corrected values fall within the expected range for CSS, supporting the hypothesis that the IB's were formed by CSS. Accounting for all model results, we obtain an average corrected value ofK = 6.0. 
    more » « less
  2. Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s. 
    more » « less
  3. Abstract We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show theandsuperlattice‐diffraction peaks. The intensity ratios between the‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with theB‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA‐ orB‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films. 
    more » « less
  4. Abstract In this study, we analyze the thermospheric density data provided by the Gravity Field and Steady‐State Ocean Circulation Explorer during June–August 2010–2013 at ∼260 km altitude and the Challenging Minisatellite Payload during June–August 2004–2007 at ∼370 km altitude to study high latitude traveling atmospheric disturbances (TADs) in austral winter. We extract the TADs along the satellite tracks from the density for varyingKp, and linearly extrapolate the TAD distribution toKp = 0; we call these the geomagnetic “quiet time” results here. We find that the quiet time spatial distribution of TADs depends on the spatial scale (along‐track horizontal wavelength) and altitude. Atz∼ 260 km, TADs with ≤ 330 km are seen mainly around and slightly downstream of the Southern Andes‐Antarctic region, while TADs with > 800 km are distributed fairly evenly around the geographic South pole at latitudes ≥60°S. Atz∼ 370 km, TADs with ≤ 330 km are relatively weak and are distributed fairly evenly over Antarctica, while TADs with > 330 km make up a bipolar distribution. For the latter, the larger size lobe is centered at ∼60°S, and is located around, downstream and somewhat upstream of the Andes/Antarctic Peninsula, while the smaller lobe is located over the Antarctic continent at 90°–150°E. We also find that the TAD morphology forKp ≥ 2 and > 330 km depends strongly on geomagnetic activity, likely due to auroral activity, with greatly enhanced TAD amplitudes with increasingKp. 
    more » « less
  5. Abstract We report plasma wave observations of equatorial magnetosonic waves at integer harmonics of the local gyrofrequency of doubly ionized helium (). The waves were observed by Van Allen Probe A on 08 Feb 2014 when the spacecraft was in the afternoon magnetic local time sector nearinside of the plasmasphere. Analysis of the complementary in‐situ energetic ion measurements (1–300 keV) reveals the presence of a helium ion ring distribution centered near 30 keV. Theoretical linear growth rate calculations suggest that the local plasma and field conditions can support the excitation of the magnetosonic waves from the unstable ring distribution. This represents the first report of the generation of magnetosonic equatorial noise via a ring distribution in energeticions in the near‐Earth space plasma environment. 
    more » « less