Abstract The Southern Ocean is a high‐nutrient, low‐chlorophyll (HNLC) region characterized by incomplete nitrate (NO3−) consumption by phytoplankton in surface waters. During this incomplete consumption, phytoplankton preferentially assimilate the14N‐ versus the15N‐bearing form of NO3−, quantified as the NO3−assimilation isotope effect (15ε). Previous summertime estimates of the15ε from HNLC regions range from 4 to 11‰. While culture work has shown that the15ε varies among phytoplankton species, as well as with light and iron stress, we lack a systematic understanding of how and why the15ε varies in the field. Here we estimate the15ε from water‐column profile and surface‐water samples collected in the Indian sector of the Southern Ocean—the first leg of the Antarctic Circumnavigation Expedition (December 2016–January 2017) and the Crossroads transect (April 2016). Consistent with prior work in the mid‐to‐late summer Southern Ocean, we estimate a higher15ε (8.9 ± 0.6‰) for the northern Subantarctic Zone and a lower15ε (5.4 ± 0.9‰) at and south of the Subantarctic Front. We interpret our data in the context of coincident measurements of phytoplankton community composition and estimates of iron and light stress. Similar to prior work, we find a significant, negative relationship between the15ε and the average mixed‐layer photosynthetically active radiation flux of 30–100 μmol m−2 s−1, while above 100 μmol m−2 s−1,15ε increases again. In addition, while we observe no robust relationship of the15ε to iron availability or phytoplankton community, mixed‐layer nitrification over the Kerguelen Plateau appears to strongly influence its magnitude. 
                        more » 
                        « less   
                    
                            
                            N2O dynamics in the western Arctic Ocean during the summer of 2017
                        
                    
    
            Abstract The western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1923387
- PAR ID:
- 10566258
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract BackgroundClimate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea. MethodsWe used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas. ResultsFall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82). ConclusionsAs sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.more » « less
- 
            Abstract The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors.more » « less
- 
            Abstract The Pacific inflow to the Arctic traditionally brings heat in summer, melting sea ice; dense waters in winter, refreshing the Arctic’s cold halocline; and nutrients year‐round, supporting Arctic ecosystems. Bering Strait moorings from 1990 to 2019 find increasing (0.010 ± 0.006 Sv/yr) northward flow, reducing Chukchi residence times by ∼1.5 months over this period (record maximum/minimum ∼7.5 and ∼4.5 months). Annual mean temperatures warm significantly (0.05 ± 0.02°C/yr), with faster change (∼0.1°C/yr) in warming (June/July) and cooling (October/November) months, which are now 2°C to 4°C above climatology. Warm (≥0°C) water duration increased from 5.5 months (the 1990s) to over 7 months (2017), mostly due to earlier warming (1.3 ± 0.7 days/yr). Dramatic winter‐only (January–March) freshening (0.03 psu/yr) makes winter waters fresher than summer waters. The resultant winter density change, too large to be compensated by Chukchi sea‐ice processes, shoals the Pacific Winter Water (PWW) equilibrium depth in the Arctic from 100–150 to 50–100 m, implying PWW no longer ventilates the Arctic’s cold halocline at 33.1 psu.more » « less
- 
            Ummenhofer, Caroline (Ed.)Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    