Social interactions with conspecifics are key to the fitness of most animals and, through the transmission opportunities they provide, are also key to the fitness of their parasites. As a result, research to date has largely focused on the role of host social behavior in imposing selection on parasites, particularly their virulence and transmission phenotypes. However, host social behavior also influences the distribution of parasites among hosts, with implications for their evolution through non-random mating, gene flow, and genetic drift, and thus ability to respond to that selection. Here, we review the paucity of empirical studies on parasites, and draw from empirical studies of free-living organisms and population genetic theory to propose several mechanisms by which host social behavior potentially drives parasite evolution through these less-well studied mechanisms. We focus on the guppy host and Gyrodactylus (Monogenea) ectoparasitic flatworm system and follow a spatially hierarchical outline to highlight that social behavior varies between individuals, and between host populations across the landscape, generating a mosaic of ecological and evolutionary outcomes for their infecting parasites. We argue that the guppy-Gyrodactylus system presents a unique opportunity to address this fundamental knowledge gap in our understanding of the connection between host social behavior and parasite evolution. Individual differences in host social behavior generates fine-scale changes in the spatial distribution of parasite genotypes, shape the size, and diversity of their infecting parasite populations and may generate non-random mating on, and non-random transmission between hosts. While at population and metapopulation level, variation in host social behavior interacts with landscape structure to affect parasite gene flow, effective population size, and genetic drift to alter the coevolutionary potential of local adaptation.
more »
« less
Broad host use and frequent polyandry in the facultative dulotic species Formica aserva (Hymenoptera: Formicidae)
Abstract The study of social parasitism faces numerous challenges arising from the intricate and intranidal host–parasite interactions and the rarity of parasites compared to their free-living counterparts. As a result, our understanding of the ecology and evolution of most social parasites remains limited. Using whole-genome and reduced-representation sequence data, we conducted a study to fill knowledge gaps on host use, colony social structure, and population genetics of the facultative dulotic ant Formica aserva Forel. Our study reveals the remarkable ability of F. aserva to exploit at least 20 different host species across its wide geographic distribution. In some cases, one social parasite colony exploits multiple hosts simultaneously, suggesting a high degree of generalization even at a local spatial scale. Approximately 80% of the colonies were monogyne (with a single queen), with many exhibiting higher rates of polyandry compared to most Formica ants. Although we identified a supergene on chromosome 3, its association with colony structure remains uncertain due to the rarity of polygyny in our sample. Population genetic analyses reveal substantial geographic population structure, with the greatest divergence between California populations and those from the rest of the range. Mitochondrial population structure differs from structure inferred from the nuclear genome on a broad geographic scale, suggesting a possible role of adaptive introgression or genetic drift. This study provides valuable insights into the ecology and evolution of F. aserva, underscoring the need for further research to decipher the complexities of host interactions and the genetic mechanisms that regulate social structure.
more »
« less
- PAR ID:
- 10566354
- Editor(s):
- Knolhoff, Lisa
- Publisher / Repository:
- Annals of the Entomological Society of America
- Date Published:
- Journal Name:
- Annals of the Entomological Society of America
- Volume:
- 117
- Issue:
- 5
- ISSN:
- 0013-8746
- Page Range / eLocation ID:
- 257 to 269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 172 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed a global phylogeny of Formica ants. The genus originated in the Old World ∼30 Ma ago and dispersed multiple times to the New World and back. Within Formica , obligate dependent colony-founding behavior arose once from a facultatively polygynous common ancestor practicing independent and facultative dependent colony foundation. Temporary social parasitism likely preceded or arose concurrently with obligate dependent colony founding, and dulotic social parasitism evolved once within the obligate dependent colony-founding clade. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from a facultative parasitic background in socially polymorphic organisms. In contrast to permanently socially parasitic ants in other genera, the high parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes.more » « less
-
null (Ed.)Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution.more » « less
-
Host temperature and gut chemistry can shape resistance to parasite infection. Heat and acidity can limit trypanosomatid infection in warm-blooded hosts and could shape infection resistance in insects as well. The colony-level endothermy and acidic guts of social bees provide unique opportunities to study how temperature and acidity shape insect–parasite associations. We compared temperature and pH tolerance between three trypanosomatid parasites from social bees and a related trypanosomatid from poikilothermic mosquitoes, which have alkaline guts. Relative to the mosquito parasites, all three bee parasites had higher heat tolerance that reflected body temperatures of hosts. Heat tolerance of the honeybee parasite Crithidia mellificae was exceptional for its genus, implicating honeybee endothermy as a plausible filter of parasite establishment. The lesser heat tolerance of the emerging Lotmaria passim suggests possible spillover from a less endothermic host. Whereas both honeybee parasites tolerated the acidic pH found in bee intestines, mosquito parasites tolerated the alkaline conditions found in mosquito midguts, suggesting that both gut pH and temperature could structure host–parasite specificity. Elucidating how host temperature and gut pH affect infection—and corresponding parasite adaptations to these factors—could help explain trypanosomatids' distribution among insects and invasion of mammals.more » « less
-
Abstract Social parasites exploit the brood care behavior of their hosts to raise their own offspring. Social parasites are common among eusocial Hymenoptera and exhibit a wide range of distinct life history traits in ants, bees, and wasps. In ants, obligate inquiline social parasites are workerless (or nearly-so) species that engage in lifelong interactions with their hosts, taking advantage of the existing host worker forces to reproduce and exploit host colonies’ resources. Inquiline social parasites are phylogenetically diverse with approximately 100 known species that evolved at least 40 times independently in ants. Importantly, ant inquilines tend to be closely related to their hosts, an observation referred to as ‘Emery’s Rule’. Polygyny, the presence of multiple egg-laying queens, was repeatedly suggested to be associated with the origin of inquiline social parasitism, either by providing the opportunity for reproductive cheating, thereby facilitating the origin of social parasite species, and/or by making polygynous species more vulnerable to social parasitism via the acceptance of additional egg-laying queens in their colonies. Although the association between host polygyny and the evolution of social parasitism has been repeatedly discussed in the literature, it has not been statistically tested in a phylogenetic framework across the ants. Here, we conduct a meta-analysis of ant social structure and social parasitism, testing for an association between polygyny and inquiline social parasitism with a phylogenetic correction for independent evolutionary events. We find an imperfect but significant over-representation of polygynous species among hosts of inquiline social parasites, suggesting that while polygyny is not required for the maintenance of inquiline social parasitism, it (or factors associated with it) may favor the origin of socially parasitic behavior. Our results are consistent with an intra-specific origin model for the evolution of inquiline social parasites by sympatric speciation but cannot exclude the alternative, inter-specific allopatric speciation model. The diversity of social parasite behaviors and host colony structures further supports the notion that inquiline social parasites evolved in parallel across unrelated ant genera in the formicoid clade via independent evolutionary pathways.more » « less
An official website of the United States government

