Network-on-Chips (NoCs) have emerged as the standard on-chip communication fabrics for multi/many core systems and system on chips. However, as the number of cores on chip increases, so does power consumption. Recent studies have shown that NoC power consumption can reach up to 40% of the overall chip power. Considerable research efforts have been deployed to significantly reduce NoC power consumption. In this paper, we build on approximate computing techniques and propose an approximate communication methodology called DEC-NoC for reducing NoC power consumption. The proposed DEC-NoC leverages applications' error tolerance and dynamically reduces the amount of error checking and correction in packet transmission, which results in a significant reduction in the number of retransmitted packets. The reduction in packet retransmission results in reduced power consumption. Our cycle accurate simulation using PARSEC benchmark suites shows that DEC-NoC achieves up to 56% latency reduction and up to 58% dynamic power reduction compared to NoC architectures with conventional error control techniques.
more »
« less
Benchmarking Artificial Neural Network Architectures for High-Performance Spiking Neural Networks
Organizations managing high-performance computing systems face a multitude of challenges, including overarching concerns such as overall energy consumption, microprocessor clock frequency limitations, and the escalating costs associated with chip production. Evidently, processor speeds have plateaued over the last decade, persisting within the range of 2 GHz to 5 GHz. Scholars assert that brain-inspired computing holds substantial promise for mitigating these challenges. The spiking neural network (SNN) particularly stands out for its commendable power efficiency when juxtaposed with conventional design paradigms. Nevertheless, our scrutiny has brought to light several pivotal challenges impeding the seamless implementation of large-scale neural networks (NNs) on silicon. These challenges encompass the absence of automated tools, the need for multifaceted domain expertise, and the inadequacy of existing algorithms to efficiently partition and place extensive SNN computations onto hardware infrastructure. In this paper, we posit the development of an automated tool flow capable of transmuting any NN into an SNN. This undertaking involves the creation of a novel graph-partitioning algorithm designed to strategically place SNNs on a network-on-chip (NoC), thereby paving the way for future energy-efficient and high-performance computing paradigms. The presented methodology showcases its effectiveness by successfully transforming ANN architectures into SNNs with a marginal average error penalty of merely 2.65%. The proposed graph-partitioning algorithm enables a 14.22% decrease in inter-synaptic communication and an 87.58% reduction in intra-synaptic communication, on average, underscoring the effectiveness of the proposed algorithm in optimizing NN communication pathways. Compared to a baseline graph-partitioning algorithm, the proposed approach exhibits an average decrease of 79.74% in latency and a 14.67% reduction in energy consumption. Using existing NoC tools, the energy-latency product of SNN architectures is, on average, 82.71% lower than that of the baseline architectures.
more »
« less
- Award ID(s):
- 2138253
- PAR ID:
- 10566460
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 24
- Issue:
- 4
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 1329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Heterogeneous manycore architectures are deployed to simultaneously run multiple and diverse applications. This requires various computing capabilities (CPUs, GPUs, and accelerators), and an efficient network-on-chip (NoC) architecture to concurrently handle diverse application communication behavior. However, supporting the concurrent communication requirements of diverse applications is challenging due to the dynamic application mapping, the complexity of handling distinct communication patterns and limited on-chip resources. In this paper, we propose Adapt-NoC, a versatile and flexible NoC architecture for chiplet-based manycore architectures, consisting of adaptable routers and links. Adapt-NoC can dynamically allocate disjoint regions of the NoC, called subNoCs, for concurrently-running applications, each of which can be optimized for different communication behavior. The adaptable routers and links are capable of providing various subNoC topologies, satisfying different latency and bandwidth requirements of various traffic patterns (e.g. all-to-all, one-to-many). Full system simulation shows that AdaptNoC can achieve 31% latency reduction, 24% energy saving and 10% execution time reduction on average, when compared to prior designs.more » « less
-
Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity patterns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge. Network-on-Chip (NoC)- based architectures provide a way to overcome this challenge as the architectural topology can be used to approximately model the expected traffic patterns that emerge from graph application workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based architecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)- enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) counterparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Processing (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph applications are inherently memory intensive, off-chip data movement gives rise to latency and energy overheads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is not integrated with the logic, off-chip data movement negatively impacts overall performance and energy consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework that integrates 3D memory (like Micron's HMC) with a massive number of GPU cores achieves 29.5% performance improvement and 30.03% less energy consumption on average compared to a conventional planar Mesh-based design with external DRAM.more » « less
-
Graph application workloads are dominated by random memory accesses with poor locality. To tackle the irregular and sparse nature of computation, ReRAM-based Processing-in-Memory (PIM) architectures have been proposed recently. Most of these ReRAM architecture designs have focused on mapping graph computations into a set of multiply-and-accumulate (MAC) operations. ReRAMs also offer a key advantage in reducing memory latency between cores and memory by allowing for processing-in-memory (PIM). However, when implemented on a ReRAM-based manycore architecture, graph applications still pose two key challenges – significant storage requirements (particularly due to wasted zero cell storage), and significant amount of on-chip traffic. To tackle these two challenges, in this paper we propose the design of a 3D NoC-enabled ReRAM-based manycore architecture. Our proposed architecture incorporates a novel crossbar-aware node reordering to reduce ReRAM storage requirements. Secondly, its 3D NoC-enabled design reduces on-chip communication latency. Our architecture outperforms the state-of-the-art in ReRAM-based graph acceleration by up to 5x in performance while consuming up to 10.3x less energy for a range of graph inputs and workloads.more » « less
-
This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors. We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks. Our hybrid architecture integrates an SNN for temporal feature extraction and an ANN for classification. We delve into the challenges of deploying such hybrid structures on hardware. Specifically, we deploy individual components on Intel's Neuromorphic Processor Loihi (for SNN) and Jetson Nano (for ANN). We also propose an accumulator circuit to transfer data from the spiking to the non-spiking domain. Furthermore, we conduct comprehensive performance analyses of hybrid SNN-ANN models on a heterogeneous system of neuromorphic and edge AI hardware, evaluating accuracy, latency, power, and energy consumption. Our findings demonstrate that the hybrid spiking networks surpass the baseline ANN model across all metrics and outperform the baseline SNN model in accuracy and latency.more » « less