The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment.
more »
« less
Reconfigurable CAN Intrusion Detection and Response System
The controller area network (CAN) remains the de facto standard for intra-vehicular communication. CAN enables reliable communication between various microcontrollers and vehicle devices without a central computer, which is essential for sustainable transportation systems. However, it poses some serious security threats due to the nature of communication. According to caranddriver.com, there were at least 150 automotive cybersecurity incidents in 2019, a 94% year-over-year increase since 2016, according to a report from Upstream Security. To safeguard vehicles from such attacks, securing CAN communication, which is the most relied-on in-vehicle network (IVN), should be configured with modifications. In this paper, we developed a configurable CAN communication protocol to secure CAN with a hardware prototype for rapidly prototyping attacks, intrusion detection systems, and response systems. We used a field programmable gate array (FPGA) to prototype CAN to improve reconfigurability. This project focuses on attack detection and response in the case of bus-off attacks. This paper introduces two main modules: the multiple generic errors module with the introduction of the error state machine (MGEESM) module and the bus-off attack detection (BOAD) module for a frame size of 111 bits (BOAD111), based on the CAN protocol presenting the introduction of form error, CRC error, and bit error. Our results show that, in the scenario with the transmit error counter (TEC) value 127 for switching between the error-passive state and bus-off state, the detection times for form error, CRC error, and bit error introduced in the MGEESM module are 3.610 ms, 3.550 ms, and 3.280 ms, respectively, with the introduction of error in consecutive frames. The detection time for BOAD111 module in the same scenario is 3.247 ms.
more »
« less
- Award ID(s):
- 2138253
- PAR ID:
- 10566462
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 13
- Issue:
- 13
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 2672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern vehicle is considered as a system vulnerable to attacks because it is connected to the outside world via a wireless interface. Although, connectivity provides more convenience and features to the passengers, however, it also becomes a pathway for the attackers targeting in-vehicle networks. Research in vehicle security is getting attention as in-vehicle attacks can impact human life safety as modern vehicle is connected to the outside world. Controller area network (CAN) is used as a legacy protocol for in-vehicle communication, However, CAN suffers from vulnerabilities due to lack of authentication, as the information about sender is missing in CAN message. In this paper, a new CAN intrusion detection system (IDS) is proposed, the CAN messages are converted to temporal graphs and CAN intrusion is detected using machine learning algorithms. Seven graph-based properties are extracted and used as features for detecting intrusions utilizing two machine learning algorithms which are support vector machine (SVM) & k-nearest neighbors (KNN). The performance of the IDS was evaluated over three CAN bus attacks are denial of service (DoS), fuzzy & spoofing attacks on real vehicular CAN bus dataset. The experimental results showed that using graph-based features, an accuracy of 97.92% & 97.99% was achieved using SVM & KNN algorithms respectively, which is better than using traditional machine learning CAN bus features.more » « less
-
Controller Area Network (CAN) is the de-facto standard in-vehicle network system. Despite its wide adoption by automobile manufacturers, the lack of security design makes it vulnerable to attacks. For instance, broadcasting packets without authentication allows the impersonation of electronic control units (ECUs). Prior mitigations, such as message authentication or intrusion detection systems, fail to address the compatibility requirement with legacy ECUs, stealthy and sporadic malicious messaging, or guaranteed attack detection. We propose a novel authentication system called ShadowAuth that overcomes the aforementioned challenges by offering backward-compatible packet authentication to ECUs without requiring ECU firmware source code. Specifically, our authentication scheme provides transparent CAN packet authentication without modifying existing CAN packet definitions (e.g., J1939) via automatic ECU firmware instrumentation technique to locate CAN packet transmission code, and instrument authentication code based on the CAN packet behavioral transmission patterns. ShadowAuth enables vehicles to detect state-of-the-art CAN attacks, such as bus-off and packet injection, responsively within 60ms without false positives. ShadowAuth provides a sound and deployable solution for real-world ECUs.more » « less
-
The Unmanned aerial vehicles (UAVs) sector is fast-expanding. Protection of real-time UAV applications against malicious attacks has become an urgent problem that needs to be solved. Denial-of-service (DoS) attack aims to exhaust system resources and cause important tasks to miss deadlines. DoS attack may be one of the common problems of UAV systems, due to its simple implementation. In this paper, we present a software framework that offers DoS attack-resilient control for real-time UAV systems using containers: Container Drone. The framework provides defense mechanisms for three critical system resources: CPU, memory, and communication channel. We restrict the attacker's access to the CPU core set and utilization. Memory bandwidth throttling limits the attacker's memory usage. By simulating sensors and drivers in the container, a security monitor constantly checks DoS attacks over communication channels. Upon the detection of a security rule violation, the framework switches to the safety controller to mitigate the attack. We implemented a prototype quadcopter with commercially off-the-shelf (COTS) hardware and open-source software. Our experimental results demonstrated the effectiveness of the proposed framework defending against various DoS attacks.more » « less
-
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions. A solution is proposed to mitigate these attacks by utilizing machine authentication codes or authenticated encryption with pre-shared keys between the communicating parties. Various tradeoffs, such as communication overhead encryption time and J1939 protocol compliance, are presented while implementing the mitigation strategy. One of our key findings is that the data flowing through RP1210-based diagnostic systems are vulnerable to MitM attacks launched from the host diagnostics computer. Security models should include controls to detect and mitigate these data flows. An example of a cryptographic security control to mitigate the risk of an MitM attack was implemented and demonstrated by using the SAE J1939 DM18 message. This approach, however, utilizes over twice the bandwidth as normal communications. Sensitive data should utilize such a security control.more » « less
An official website of the United States government

