skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: CAN Bus Intrusion Detection Based on Auxiliary Classifier GAN and Out-of-distribution Detection
The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment.  more » « less
Award ID(s):
2038960
PAR ID:
10388880
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
21
Issue:
4
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intrusion detection systems are a commonly deployed defense that examines network traffic, host operations, or both to detect attacks. However, more attacks bypass IDS defenses each year, and with the sophistication of attacks increasing as well, we must examine new perspectives for intrusion detection. Current intrusion detection systems focus on known attacks and/or vulnerabilities, limiting their ability to identify new attacks, and lack the visibility into all system components necessary to confirm attacks accurately, particularly programs. To change the landscape of intrusion detection, we propose that future IDSs track how attacks evolve across system layers by adapting the concept of attack graphs. Attack graphs were proposed to study how multi-stage attacks could be launched by exploiting known vulnerabilities. Instead of constructing attacks reactively, we propose to apply attack graphs proactively to detect sequences of events that fulfill the requirements for vulnerability exploitation. Using this insight, we examine how to generate modular attack graphs automatically that relate adversary accessibility for each component, called its attack surface, to flaws that provide adversaries with permissions that create threats, called attack states, and exploit operations from those threats, called attack actions. We evaluate the proposed approach by applying it to two case studies: (1) attacks on file retrieval, such as TOCTTOU attacks, and (2) attacks propagated among processes, such as attacks on Shellshock vulnerabilities. In these case studies, we demonstrate how to leverage existing tools to compute attack graphs automatically and assess the effectiveness of these tools for building complete attack graphs. While we identify some research areas, we also find several reasons why attack graphs can provide a valuable foundation for improving future intrusion detection systems. 
    more » « less
  2. This paper presents a deep learning based multi-label attack detection approach for the distributed control in AC microgrids. The secondary control of AC microgrids is formulated as a constrained optimization problem with voltage and frequency as control variables which is then solved using a distributed primal-dual gradient algorithm. The normally distributed false data injection (FDI) attacks against the proposed distributed control are then designed for the distributed gener-ator's output voltage and active/reactive power measurements. In order to detect the presence of false measurements, a deep learning based attack detection strategy is further developed. The proposed attack detection is formulated as a multi-label classification problem to capture the inconsistency and co-occurrence dependencies in the power flow measurements due to the presence of FDI attacks. With this multi-label classification scheme, a single model is able to identify the presence of different attacks and load change simultaneously. Two different deep learning techniques are compared to design the attack detector, and the performance of the proposed distributed control and the attack detector is demonstrated through simulations on the modified IEEE 34-bus distribution test system. 
    more » « less
  3. A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilizing loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30-bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks, so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks, but also intelligently designed attacks. Moreover, using the SVR predicted loads to re-dispatch generation when attacks are detected can significantly mitigate the attack consequences. 
    more » « less
  4. Attack detection problems in industrial control systems (ICSs) are commonly known as a network traffic monitoring scheme for detecting abnormal activities. However, a network-based intrusion detection system can be deceived by attackers that imitate the system’s normal activity. In this work, we proposed a novel solution to this problem based on measurement data in the supervisory control and data acquisition (SCADA) system. The proposed approach is called measurement intrusion detection system (MIDS), which enables the system to detect any abnormal activity in the system even if the attacker tries to conceal it in the system’s control layer. A supervised machine learning model is generated to classify normal and abnormal activities in an ICS to evaluate the MIDS performance. A hardware-in-the-loop (HIL) testbed is developed to simulate the power generation units and exploit the attack dataset. In the proposed approach, we applied several machine learning models on the dataset, which show remarkable performances in detecting the dataset’s anomalies, especially stealthy attacks. The results show that the random forest is performing better than other classifier algorithms in detecting anomalies based on measured data in the testbed. 
    more » « less
  5. Modern vehicles can be thought of as complex distributed embedded systems that run a variety of automotive applications with real-time constraints. Recent advances in the automotive industry towards greater autonomy are driving vehicles to be increasingly connected with various external systems (e.g., roadside beacons, other vehicles), which makes emerging vehicles highly vulnerable to cyber-attacks. Additionally, the increased complexity of automotive applications and the in-vehicle networks results in poor attack visibility, which makes detecting such attacks particularly challenging in automotive systems. In this work, we present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Network (CAN) based networks within automotive platforms. Our proposed LATTE framework uses a stacked Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal operating behavior at design time. Subsequently, a novel detection scheme (also trained at design time) is used to detect various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE framework under different automotive attack scenarios and present a detailed comparison with the best-known prior works in this area, to demonstrate the potential of our approach. 
    more » « less