Abstract Development of high‐performance, low‐cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon‐supported ruthenium–copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3and CuCl2at 200 A for 10 s produces Ru–Cl residues‐decorated Ru nanocrystals dispersed on a CuClxscaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C‐3 sample exhibits the best activity in 1 mKOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only −23 and +270 mV to reach 10 mA cm−2, respectively. When RuCu/C‐3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm−2, markedly better than that with a mixture of commercial Pt/C+RuO2(1.59 V). In situ X‐ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru–Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting.
more »
« less
Rapid Synthesis of Carbon‐Supported Ru‐RuO₂ Heterostructures for Efficient Electrochemical Water Splitting
Abstract Development of high‐performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one‐step production of Ru‐RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott‐Schottky heterojunctions significantly enhances charge transfer across the Ru‐RuO2interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 mKOH. Among the series, the sample prepares at 300 A for 10 s exhibits the best performance, with an overpotential of only −31 mV for HER and +240 mV for OER to reach the current density of 10 mA cm⁻2. Additionally, the catalyst demonstrates excellent durability, with minimal impacts of electrolyte salinity. With the sample as the bifunctional catalysts for overall water splitting, an ultralow cell voltage of 1.43 V is needed to reach 10 mA cm⁻2, 160 mV lower than that with a commercial 20% Pt/C and RuO₂/C mixture. These results highlight the significant potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting and sustainable hydrogen production from seawater.
more »
« less
- Award ID(s):
- 1900235
- PAR ID:
- 10566472
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ruthenium has been hailed as a competitive alternative for platinum toward hydrogen evolution reaction (HER), a critical process in electrochemical water splitting. In this study, we successfully prepare metallic Ru nanoparticles supported on carbon paper by utilizing a novel magnetic induction heating (MIH) method. The samples are obtained within seconds, featuring a Cl‐enriched surface that is unattainable via conventional thermal annealing. The best sample within the series shows a remarkable HER activity in both acidic and alkaline media with an overpotential of only ‐23 and ‐12 mV to reach the current density of 10 mA/cm2, highly comparable to that of the Pt/C benchmark. Theoretical studies based on density functional theory show that the excellent electrocatalytic activity is accounted by the surface metal‐Cl species that facilitate charge transfer and downshift the d‐band center. Results from this study highlight the unique advantages of MIH in rapid sample preparation, where residual anion ligands play a critical role in manipulating the electronic properties of the metal surfaces and the eventual electrocatalytic activity.more » « less
-
Production of clean hydrogen energy from water splitting is vital for the future fuel industry, and nanocomposites have emerged as effective catalysts for the hydrogen evolution reaction (HER). In this study, Ru-CoO@SNG nanocomposites are prepared by controlled pyrolysis where Ru-CoO heterostructured nanoparticles are supported on nitrogen and sulfur codoped graphene oxide nanosheets. With a large surface area, the obtained composites exhibit a remarkable electrocatalytic activity toward HER in 1.0 M KOH with an overpotential of only −90 mV to reach the current density of 10 mA cm−2 , in comparison to −60 mV for commercial Pt/C benchmark, along with high stability. Mechanistically, codoping of sulfur and nitrogen facilitates the dispersion of the nanoparticles, and the formation of Ru-CoO heterostructures increases the active site density, reduces the electron-transfer kinetics and boosts the catalytic performance. Results from this study highlight the unique potential of structural engineering in enhancing the electrocatalytic performance of heterostructured nanocomposites.more » « less
-
Ruthenium has emerged as a promising substitute for platinum toward the hydrogen evolution/oxidation reaction (HER/HOR). Herein, ruthenium/carbon composites are prepared by magnetic induction heating (300 A, 10 s) of RuCl3, RuBr3or RuI3loaded on hollow N‐doped carbon cages (HNC). The HNC‐RuCl3‐300A sample consists of Ru nanoparticles (dia. 1.96 nm) and abundant Cl residues. HNC‐RuBr3‐300A possesses a larger nanoparticle size (≈19.36 nm) and lower content of Br residues. HNC‐RuI3‐300A contains only bulk‐like Ru agglomerates with a minimal amount of I residues, due to reduced Ru‐halide bonding interactions. Among these, HNC‐RuCl3‐300A exhibits the best HER activity in alkaline media, with a low overpotential of only −26 mV to reach 10 mA cm−2, even outperforming Pt/C, and can be used as the cathode catalyst for anion exchange membrane water electrolyzer (along with commercial RuO2as the anode catalyst), producing 0.5 A cm−2at 1.88 V for up to 100 h, a performance markedly better than that with Pt/C. HNC‐RuCl3‐300A also exhibits the best HOR activity, with a half‐wave potential (+18 mV) even lower than that of Pt/C (+35 mV). These activities are ascribed to the combined contributions of small Ru nanoparticles and Ru‐to‐halide charge transfer that weaken H adsorption.more » « less
-
null (Ed.)Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni–P–O, Ni–S–O, and Ni–S–P–O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni–S–P–O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell.more » « less
An official website of the United States government
