Activity recognition is a crucial aspect in smart manufacturing and human-robot collaboration, as robots play a vital role in improving efficiency and safety by accurately recognizing human intentions and proactively assisting with tasks. Current human intention recognition applications only consider the accuracy of recognition but ignore the importance of predicting it in advance. Given human reaching movements, we want to equip the robot with the ability to predict human intent not only with precise recognition but also at an early stage. In this paper, we propose a framework to apply Transformer-based and LSTM-based models to learn motion intentions. Second, based on the observation of distances of human joints along the motion trajectory, we explore how we can use the hidden Markov model to find intent state transitions, i.e., intent uncertainty and intent certainty. Finally, two data types are generated, one for the full data and the other for the length of data before state transitions; both data are evaluated on models to assess the robustness of intention prediction. We conducted experiments in a manufacturing workspace where the experimenter reaches multiple scattered targets and further this experimental scenario was designed to examine how intents differ, but motions are only slightly different. The proposed models were then evaluated with experimental data, and further performance comparisons were made between models and between different intents. Finally, early predictions were validated to be better than using full-length data. 
                        more » 
                        « less   
                    This content will become publicly available on November 4, 2025
                            
                            Predicting Human Intent to Interact with a Public Robot: The People Approaching Robots Database (PAR-D)
                        
                    
    
            This work studies the problem of predicting human intent to interact with a robot in a public environment. To facilitate research in this problem domain, we first contribute the People Approaching Robots Database (PAR-D), a new collection of datasets for intent prediction in Human-Robot Interaction. The database includes a subset of the ATC Approach Trajectory dataset [28] with augmented ground truth labels. It also includes two new datasets collected with a robot photographer on two locations of a university campus. Then, we contribute a novel human-annotated baseline for predicting intent. Our results suggest that the robot’s environment and the amount of time that a person is visible impacts human performance in this prediction task. We also provide computational baselines for intent prediction in PAR-D by comparing the performance of several machine learning models, including ones that directly model pedestrian interaction intent and others that predict motion trajectories as an intermediary step. From these models, we find that trajectory prediction seems useful for inferring intent to interact with a robot in a public environment. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2143109
- PAR ID:
- 10566588
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400704628
- Page Range / eLocation ID:
- 536 to 545
- Subject(s) / Keyword(s):
- Human-Robot Interaction Human Behavior Forecasting
- Format(s):
- Medium: X
- Location:
- San Jose Costa Rica
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Human intention prediction plays a critical role in human–robot collaboration, as it helps robots improve efficiency and safety by accurately anticipating human intentions and proactively assisting with tasks. While current applications often focus on predicting intent once human action is completed, recognizing human intent in advance has received less attention. This study aims to equip robots with the capability to forecast human intent before completing an action, i.e., early intent prediction. To achieve this objective, we first extract features from human motion trajectories by analyzing changes in human joint distances. These features are then utilized in a Hidden Markov Model (HMM) to determine the state transition times from uncertain intent to certain intent. Second, we propose two models including a Transformer and a Bi-LSTM for classifying motion intentions. Then, we design a human–robot collaboration experiment in which the operator reaches multiple targets while the robot moves continuously following a predetermined path. The data collected through the experiment were divided into two groups: full-length data and partial data before state transitions detected by the HMM. Finally, the effectiveness of the suggested framework for predicting intentions is assessed using two different datasets, particularly in a scenario when motion trajectories are similar but underlying intentions vary. The results indicate that using partial data prior to the motion completion yields better accuracy compared to using full-length data. Specifically, the transformer model exhibits a 2% improvement in accuracy, while the Bi-LSTM model demonstrates a 6% increase in accuracy.more » « less
- 
            This work challenges the common assumption in physical human-robot interaction (pHRI) that the movement intention of a human user can be simply modeled with dynamic equations relating forces to movements, regardless of the user. Studies in physical human-human interaction (pHHI) suggest that interaction forces carry sophisticated information that reveals motor skills and roles in the partnership and even promotes adaptation and motor learning. In this view, simple force-displacement equations often used in pHRI studies may not be sufficient. To test this, this work measured and analyzed the interaction forces (F) between two humans as the leader guided the blindfolded follower on a randomly chosen path. The actual trajectory of the follower was transformed to the velocity commands (V) that would allow a hypothetical robot follower to track the same trajectory. Then, possible analytical relationships between F and V were obtained using neural network training. Results suggest that while F helps predict V, the relationship is not straightforward, that seemingly irrelevant components of F may be important, that force-velocity relationships are unique to each human follower, and that human neural control of movement may affect the prediction of the movement intent. It is suggested that user-specific, stereotype-free controllers may more accurately decode human intent in pHRI.more » « less
- 
            We focus on the problem of planning the motion of a robot in a dynamic multiagent environment such as a pedestrian scene. Enabling the robot to navigate safely and in a socially compliant fashion in such scenes requires a representation that accounts for the unfolding multiagent dynamics. Existing approaches to this problem tend to employ microscopic models of motion prediction that reason about the individual behavior of other agents. While such models may achieve high tracking accuracy in trajectory prediction benchmarks, they often lack an understanding of the group structures unfolding in crowded scenes. Inspired by the Gestalt theory from psychology, we build a Model Predictive Control framework (G-MPC) that leverages group-based prediction for robot motion planning. We conduct an extensive simulation study involving a series of challenging navigation tasks in scenes extracted from two real-world pedestrian datasets. We illustrate that G-MPC enables a robot to achieve statistically significantly higher safety and lower number of group intrusions than a series of baselines featuring individual pedestrian motion prediction models. Finally, we show that G-MPC can handle noisy lidar-scan estimates without significant performance losses.more » « less
- 
            Recent work in Human-Robot Interaction (HRI) has shown that robots can leverage implicit communicative signals from users to understand how they are being perceived during interactions. For example, these signals can be gaze patterns, facial expressions, or body motions that reflect internal human states. To facilitate future research in this direction, we contribute the REACT database, a collection of two datasets of human-robot interactions that display users’ natural reactions to robots during a collaborative game and a photography scenario. Further, we analyze the datasets to show that interaction history is an important factor that can influence human reactions to robots. As a result, we believe that future models for interpreting implicit feedback in HRI should explicitly account for this history. REACT opens up doors to this possibility in the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
