skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 8, 2025

Title: Analysis of flows in social media uncovers a new multi-step model of information spread
Abstract Since the advent of the internet, communication paradigms have continuously evolved, resulting in a present-day landscape where the dynamics of information dissemination have undergone a complete transformation compared to the past. In this study, we challenge the conventional two-step flow communication model, a long-standing paradigm in the field. Our approach introduces a more intricate multi-step and multi-actor model that effectively captures the complexities of modern information spread. We test our hypothesis by examining the spread of information on the Twitter platform. Our findings support the multi-step and multi-actor model hypothesis. In this framework, influencers (individuals with a significant presence in social media) emerge as new central figures and partially take on the role previously attributed to opinion leaders. However, this does not apply to opinion leaders who adapt and reaffirm their influential position on social media, here defined as opinion-leading influencers. Additionally, we note a substantial number of adopters directly accessing information sources, suggesting a potential decline in influence in both opinion leaders and influencers. Finally, we found distinctions in the diffusion patterns of left-/right-leaning groups, indicating variations in the underlying structure of information dissemination across different ideologies.  more » « less
Award ID(s):
2214215
PAR ID:
10566648
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Journal of Statistical Mechanics: Theory and Experiment
Volume:
2024
Issue:
11
ISSN:
1742-5468
Page Range / eLocation ID:
113402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. People are increasingly exposed to science and political information from social media. One consequence is that these sites play host to “alternative influencers,” who spread misinformation. However, content posted by alternative influencers on different social media platforms is unlikely to be homogenous. Our study uses computational methods to investigate how dimensions we refer to as audience and channel of social media platforms influence emotion and topics in content posted by “alternative influencers” on different platforms. Using COVID-19 as an example, we find that alternative influencers’ content contained more anger and fear words on Facebook and Twitter compared to YouTube. We also found that these actors discussed substantively different topics in their COVID-19 content on YouTube compared to Twitter and Facebook. With these findings, we discuss how the audience and channel of different social media platforms affect alternative influencers’ ability to spread misinformation online. 
    more » « less
  2. Abstract Social media has been transforming political communication dynamics for over a decade. Here using nearly a billion tweets, we analyse the change in Twitter’s news media landscape between the 2016 and 2020 US presidential elections. Using political bias and fact-checking tools, we measure the volume of politically biased content and the number of users propagating such information. We then identify influencers—users with the greatest ability to spread news in the Twitter network. We observe that the fraction of fake and extremely biased content declined between 2016 and 2020. However, results show increasing echo chamber behaviours and latent ideological polarization across the two elections at the user and influencer levels. 
    more » « less
  3. null (Ed.)
    Delivering the right information to the right people in a timely manner can greatly improve outcomes and save lives in emergency response. A communication framework that flexibly and efficiently brings victims, volunteers, and first responders together for timely assistance can be very helpful. With the burden of more frequent and intense disaster situations and first responder resources stretched thin, people increasingly depend on social media for communicating vital information. This paper proposes ONSIDE, a framework for coordination of disaster response leveraging social media, integrating it with Information-Centric dissemination for timely and relevant dissemination. We use a graph-based pub/sub namespace that captures the complex hierarchy of the incident management roles. Regular citizens and volunteers using social media may not know of or have access to the full namespace. Thus, we utilize a social media engine (SME) to identify disaster-related social media posts and then automatically map them to the right name(s) in near-real-time. Using NLP and classification techniques, we direct the posts to appropriate first responder(s) that can help with the posted issue. A major challenge for classifying social media in real-time is the labeling effort for model training. Furthermore, as disasters hits, there may be not enough data points available for labeling, and there may be concept drift in the content of the posts over time. To address these issues, our SME employs stream-based active learning methods, adapting as social media posts come in. Preliminary evaluation results show the proposed solution can be effective. 
    more » « less
  4. Cremonini, Marco (Ed.)
    Understanding the spread of false or dangerous beliefs—often called misinformation or disinformation—through a population has never seemed so urgent. Network science researchers have often taken a page from epidemiologists, and modeled the spread of false beliefs as similar to how a disease spreads through a social network. However, absent from those disease-inspired models is an internal model of an individual’s set of current beliefs, where cognitive science has increasingly documented how the interaction between mental models and incoming messages seems to be crucially important for their adoption or rejection. Some computational social science modelers analyze agent-based models where individuals do have simulated cognition, but they often lack the strengths of network science, namely in empirically-driven network structures. We introduce a cognitive cascade model that combines a network science belief cascade approach with an internal cognitive model of the individual agents as in opinion diffusion models as a public opinion diffusion (POD) model, adding media institutions as agents which begin opinion cascades. We show that the model, even with a very simplistic belief function to capture cognitive effects cited in disinformation study (dissonance and exposure), adds expressive power over existing cascade models. We conduct an analysis of the cognitive cascade model with our simple cognitive function across various graph topologies and institutional messaging patterns. We argue from our results that population-level aggregate outcomes of the model qualitatively match what has been reported in COVID-related public opinion polls, and that the model dynamics lend insights as to how to address the spread of problematic beliefs. The overall model sets up a framework with which social science misinformation researchers and computational opinion diffusion modelers can join forces to understand, and hopefully learn how to best counter, the spread of disinformation and “alternative facts.” 
    more » « less
  5. Social media is a vital means for information-sharing due to its easy access, low cost, and fast dissemination characteristics. However, increases in social media usage have corresponded with a rise in the prevalence of cyberbullying. Most existing cyberbullying detection methods are supervised and, thus, have two key drawbacks: (1) The data labeling process is often labor-intensive and time-consuming; (2) Current labeling guidelines may not be generalized to future instances because of different language usage and evolving social networks. To address these limitations, this work introduces a principled approach for unsupervised cyberbullying detection. The proposed model consists of two main components: (1) A representation learning network that encodes the social media session by exploiting multi-modal features, e.g., text, network, and time. (2) A multi-task learning network that simultaneously fits the time intervals and estimates the bullying likelihood based on a Gaussian Mixture Model. The proposed model jointly optimizes the parameters of both components to overcome the shortcomings of decoupled training. Our core contribution is an unsupervised cyberbullying detection model that not only experimentally outperforms the state-of-the-art unsupervised models, but also achieves competitive performance compared to supervised models. 
    more » « less