skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Skip-WaveNet: a wavelet based multi-scale architecture to trace snow layers in radar echograms
Abstract Airborne radar sensors capture the profile of snow layers present on top of an ice sheet. Accurate tracking of these layers is essential to calculate their thicknesses, which are required to investigate the contribution of polar ice cap melt to sea-level rise. However, automatically processing the radar echograms to detect the underlying snow layers is a challenging problem. In our work, we develop wavelet-based multi-scale deep learning architectures for these radar echograms to improve snow layer detection. These architectures estimate the layer depths with a mean absolute error of 3.31 pixels and 94.3% average precision, achieving higher generalizability as compared to state-of-the-art snow layer detection networks. These depth estimates also agree well with physically drilled stake measurements. Such robust architectures can be used on echograms from future missions to efficiently trace snow layers, estimate their individual thicknesses, and thus support sea-level rise projection models.  more » « less
Award ID(s):
2308649
PAR ID:
10566766
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Environmental Data Science
Volume:
3
ISSN:
2634-4602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Climate change is extensively affecting ice sheets resulting in accelerating mass loss in recent decades. Assessment of this reduction and its causes is required to project future ice mass loss. Annual snow accumulation is an important component of the surface mass balance of ice sheets. While in situ snow accumulation measurements are temporally and spatially limited due to their high cost, airborne radar sounders can achieve ice sheet wide coverage by capturing and tracking annual snow layers in the radar images or echograms. In this paper, we use deep learning to uniquely identify the position of each annual snow layer in the Snow Radar echograms taken across different regions over the Greenland ice sheet. We train with more than 15,000 images generated from radar echograms and estimate the thickness of each snow layer within a mean absolute error of 0.54 to 7.28 pixels, depending on dataset. A highly precise snow layer thickness can help improve weather models and, thus, support glaciological studies. Such a well-trained deep learning model can be used with ever-growing datasets to aid in the accurate assessment of snow accumulation on the dynamically changing ice sheets. 
    more » « less
  2. {"Abstract":["The accelerated melting of ice sheets in Greenland and Antarctica, driven by climate warming, is significantly contributing to global sea level rise. To better understand this phenomenon, airborne radars have been deployed to create echogram images that map snow accumulation patterns in these regions. Utilizing advanced radar systems developed by the Center for Remote Sensing and Integrated Systems (CReSIS), around 1.5 petabytes of climate data have been collected. However, extracting ice-related information, such as accumulation rates, remains limited due to the largely manual and time-consuming process of tracking internal layers in radar echograms. This highlights the need for automated solutions.\n\nMachine learning and deep learning algorithms are well-suited for this task, given their near human performance on optical images. The overlap between classical radar signal processing and machine learning techniques suggests that combining concepts from both fields could lead to optimized soluti 
    more » « less
  3. Abstract. Wind-driven redistribution of snow on sea ice alters itstopography and microstructure, yet the impact of these processes on radarsignatures is poorly understood. Here, we examine the effects of snowredistribution over Arctic sea ice on radar waveforms and backscattersignatures obtained from a surface-based, fully polarimetric Ka- and Ku-bandradar at incidence angles between 0∘ (nadir) and 50∘.Two wind events in November 2019 during the Multidisciplinary drifting Observatory forthe Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- andKu-band radar waveforms and backscatter coefficients at nadir are observed,coincident with surface topography changes measured by a terrestrial laserscanner. At both frequencies, redistribution caused snow densification atthe surface and the uppermost layers, increasing the scattering at theair–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previousair–snow interfaces, buried beneath newly deposited snow. The additionalscattering from previous air–snow interfaces could therefore affect therange retrieved from Ka- and Ku-band satellite altimeters. With increasingincidence angles, the relative scattering contribution of the air–snowinterface decreases, and the snow–sea ice interface scattering increases.Relative to pre-wind event conditions, azimuthally averaged backscatter atnadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scanarea at all incidence angles and polarizations, in response to increasingwind speed and changes in wind direction. Our results show that snowredistribution and wind compaction need to be accounted for to interpretairborne and satellite radar measurements of snow-covered sea ice. 
    more » « less
  4. Abstract Feedbacks between ice melt, glacier flow and ocean circulation can rapidly accelerate ice loss at tidewater glaciers and alter projections of sea-level rise. At the core of these projections is a model for ice melt that neglects the fact that glacier ice contains pressurized bubbles of air due to its formation from compressed snow. Current model estimates can underpredict glacier melt at termini outside the region influenced by the subglacial discharge plume by a factor of 10–100 compared with observations. Here we use laboratory-scale experiments and theoretical arguments to show that the bursting of pressurized bubbles from glacier ice could be a source of this discrepancy. These bubbles eject air into the seawater, delivering additional buoyancy and impulses of turbulent kinetic energy to the boundary layer, accelerating ice melt. We show that real glacier ice melts 2.25 times faster than clear bubble-free ice when driven by natural convection in a laboratory setting. We extend these results to the geophysical scale to show how bubble dynamics contribute to ice melt from tidewater glaciers. Consequently, these results could increase the accuracy of modelled predictions of ice loss to better constrain sea-level rise projections globally. 
    more » « less
  5. Repeated transects have become the backbone of spatially distributed ice and snow thickness measurements crucial for understanding of ice mass balance. Here we detail the transects at the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) 2019–2020, which represent the first such measurements collected across an entire season. Compared with similar historical transects, the snow at MOSAiC was thin (mean depths of approximately 0.1–0.3 m), while the sea ice was relatively thick first-year ice (FYI) and second-year ice (SYI). SYI was of two distinct types: relatively thin level ice formed from surfaces with extensive melt pond cover, and relatively thick deformed ice. On level SYI, spatial signatures of refrozen melt ponds remained detectable in January. At the beginning of winter the thinnest ice also had the thinnest snow, with winter growth rates of thin ice (0.33 m month−1 for FYI, 0.24 m month−1 for previously ponded SYI) exceeding that of thick ice (0.2 m month−1). By January, FYI already had a greater modal ice thickness (1.1 m) than previously ponded SYI (0.9 m). By February, modal thickness of all SYI and FYI became indistinguishable at about 1.4 m. The largest modal thicknesses were measured in May at 1.7 m. Transects included deformed ice, where largest volumes of snow accumulated by April. The remaining snow on level ice exhibited typical spatial heterogeneity in the form of snow dunes. Spatial correlation length scales for snow and sea ice ranged from 20 to 40 m or 60 to 90 m, depending on the sampling direction, which suggests that the known anisotropy of snow dunes also manifests in spatial patterns in sea ice thickness. The diverse snow and ice thickness data obtained from the MOSAiC transects represent an invaluable resource for model and remote sensing product development. 
    more » « less